Multiphase hydrodynamic flow characterization for surface finishing the laser powder bed fused AlSi10Mg conformal cooling channels

2021 ◽  
Vol 68 ◽  
pp. 277-292
Author(s):  
Arun Prasanth Nagalingam ◽  
Vijay Santhanam ◽  
Nithin Kumar Gupta Dachepally ◽  
S.H. Yeo
2020 ◽  
Vol 26 (10) ◽  
pp. 1827-1836
Author(s):  
Christopher Gottlieb Klingaa ◽  
Sankhya Mohanty ◽  
Jesper Henri Hattel

Purpose Conformal cooling channels in additively manufactured molds are superior over conventional channels in terms of cooling control, part warpage and lead time. The heat transfer ability of cooling channels is determined by their geometry and surface roughness. Laser powder bed fusion manufactured channels have an inherent process-induced dross formation that may significantly alter the actual shape of nominal channels. Therefore, it is crucial to be able to predict the expected surface roughness and changes in the geometry of metal additively manufactured conformal cooling channels. The purpose of this paper is to present a new methodology for predicting the realistic design of laser powder bed fusion channels. Design/methodology/approach This study proposes a methodology for making nominal channel design more realistic by the implementation of roughness prediction models. The models are used for altering the nominal shape of a channel to its predicted shape by point cloud analysis and manipulation. Findings A straight channel is investigated as a simple case study and validated against X-ray computed tomography measurements. The modified channel geometry is reconstructed and meshed, resulting in a predicted, more realistic version of the nominal geometry. The methodology is successfully tested on a torus shape and a simple conformal cooling channel design. Finally, the methodology is validated through a cooling test experiment and comparison with simulations. Practical implications Accurate prediction of channel surface roughness and geometry would lead toward more accurate modeling of cooling performance. Originality/value A robust start to finish method for realistic geometrical prediction of metal additive manufacturing cooling channels has yet to be proposed. The current study seeks to fill the gap.


2021 ◽  
Vol 1019 ◽  
pp. 205-210
Author(s):  
Deepika S. Singraur ◽  
Bhushan T. Patil ◽  
Vasim A. Shaikh

The cooling process is an essential aspect while designing for uniform heat transfer between the mold and the molded part. Improper design and placement of cooling channels result in non-uniform cooling and thus results in differential shrinkage and warpage on the final product. The installation of the channels yet plays a crucial role in the cooling of the part. Conforming channels that are placed at an optimum distance from the part to enhance the cooling process. In this paper, the performance parameters of straight drilled channels are compared with the conformal cooling channels for an electric alarm box. The analysis indicates that the conformal cooling method improved and enhanced the cooling process and reduced the defects like warpage and differential shrinkage by 25.5% and 28.0% respectively.


Sign in / Sign up

Export Citation Format

Share Document