conformal cooling channels
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7258
Author(s):  
Chil-Chyuan Kuo ◽  
Shao-Xuan Qiu

Direct metal printing is a promising technique for manufacturing injection molds with complex conformal cooling channels from maraging steel powder, which is widely applied in automotive or aerospace industries. However, two major disadvantages of direct metal printing are the narrow process window and length of time consumed. The fabrication of high-density injection molds is frequently applied to prevent coolant leakage during the cooling stage. In this study, we propose a simple method of reducing coolant leakage for a direct-metal-printed injection mold with conformal cooling channels by combining injection mold fabrication with general process parameters, as well as solution and aging treatment (SAT). This study comprehensively investigates the microstructural evolution of the injection mold after SAT using field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. We found that the surface hardness of the injection mold was enhanced from HV 189 to HV 546 as the Ni-Mo precipitates increased from 12.8 to 18.5%. The size of the pores was reduced significantly due to iron oxide precipitates because the relative density of the injection mold increased from 99.18 to 99.72%. The total production time of the wax injection mold without coolant leakage during the cooling stage was only 62% that of the production time of the wax injection mold fabricated with high-density process parameters. A significant savings of up to 46% of the production cost of the injection mold was obtained.


2021 ◽  
Author(s):  
Hugo Miguel Silva ◽  
Tiago Noversa ◽  
Hugo Rodrigues ◽  
Leandro Fernandes ◽  
António Pontes

Abstract The manufacturing of Conformal cooling channels (CCC’s) is now easier and more affordable, owing to the recent developments in the field of additive manufacturing. The use of CCC’s allows better cooling performances than the conventional (straight-drilled) channels, in the injection molding process. The main reason is that CCC’s can follow the pathways of the molded geometry, while the conventional channels, manufactured by traditional machining techniques, are not able to. Using CCCs can significantly improve the cycle time, allow to obtain a more uniform temperature distribution, and reduce thermal stresses and warpage. However, the design process for CCC is more complex than for conventional channels. Computer-aided engineering (CAE) simulations are important for achieving effective and affordable design. This article presents important results regarding molds with new conformal cooling channels geometries. The aim is to assess the maximum pressure that the parts can be subjected to in a real injection molding application. Linear structural analyses are carried over in the Finite Element Method Software ANSYS Workbench 2020 R2, in order to analyze both the resistance and stiffness behavior of the studied geometries. The results are analyzed according to several metrics. The results were discussed and it could be concluded that some of the structures are suitable for the typical operating conditions of the injection molding process.


2021 ◽  
Author(s):  
Hugo Miguel Silva ◽  
Leandro Fernandes ◽  
Hugo Luís Rodrigues ◽  
João Tiago Noversa ◽  
António José Pontes

Abstract Because of recent advancements in additive manufacturing, fabricating conformal cooling channels (CCCs) has become easier and more economical. In the injection molding process, CCCs provide higher cooling performance than standard (straight drilled) channels. The major reason for this is that CCCs may follow the courses of the molded geometry, whereas typical channels created using traditional machining processes cannot. Using CCCs can reduce thermal strains and warpage while also improving cycle time and achieving a more uniform temperature distribution. CCC, on the other hand, has a more complicated design procedure than traditional channels. Simulations using computer-aided engineering (CAE) are critical for achieving an effective and cost-effective design. This article compares two ANSYS modules for the purpose of validating results. It can be inferred that the two modules produce similar results for models with fine mesh. As a result, the ANSYS module to work on should be chosen depending on the job's goal as well as the CAD geometry's complexity.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5695
Author(s):  
Jaume Pujante ◽  
Borja González ◽  
Eduard Garcia-Llamas

Since the popularization of press hardening in the early noughties, die and tooling systems have experienced considerable advances, with tool refrigeration as an important focus. However, it is still complicated to obtain homogeneous cooling and avoid hot spot issues in complex geometries. Additive Manufacturing allows designing cavities inside the material volume with little limitation in terms of channel intersection or bore entering and exit points. In this sense, this technology is a natural fit for obtaining surface-conforming cooling channels: an attractive prospect for refrigerated tools. This work describes a pilot experience in 3D-printed press hardening tools, comparing the performance of additive manufactured Maraging steel 1.2709 to conventional wrought hot work tool steel H13 on two different metrics: durability and thermal performance. For the first, wear studies were performed in a controlled pilot plant environment after 800 hot stamping strokes in an omega tool configuration. On the second, a demonstrator tool based on a commercial tool with hot spot issues, was produced by 3D printing including surface-conformal cooling channels. This tool was then used in a pilot press hardening line, in which tool temperature was analyzed and compared to an equivalent tool produced by conventional means. Results show that the Additive Manufacturing technologies can be successfully applied to the production of press hardening dies, particularly in intricate geometries where new cooling channel design strategies offer a solution for hot spots and inhomogeneous thermal loads.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3115
Author(s):  
Abelardo Torres-Alba ◽  
Jorge Manuel Mercado-Colmenero ◽  
Juan De Dios Caballero-Garcia ◽  
Cristina Martin-Doñate

The paper presents a hybrid cooling model based on the use of newly designed fluted conformal cooling channels in combination with inserts manufactured with Fastcool material. The hybrid cooling design was applied to an industrial part with complex geometry, high rates of thickness, and deep internal concavities. The geometry of the industrial part, besides the ejection system requirements of the mold, makes it impossible to cool it adequately using traditional or conformal standard methods. The addition of helical flutes in the circular conformal cooling channel surfaces generates a high number of vortexes and turbulences in the coolant flow, fostering the thermal exchange between the flow and the plastic part. The use of a Fastcool insert allows an optimal transfer of the heat flow in the slender core of the plastic part. An additional conformal cooling channel layout was required, not for the cooling of the plastic part, but for cooling the Fastcool insert, improving the thermal exchange between the Fastcool insert and the coolant flow. In this way, it is possible to maintain a constant heat exchange throughout the manufacturing cycle of the plastic part. A transient numerical analysis validated the improvements of the hybrid design presented, obtaining reductions in cycle time for the analyzed part by 27.442% in comparison with traditional cooling systems. The design of the 1 mm helical fluted conformal cooling channels and the use of the Fastcool insert cooled by a conformal cooling channel improves by 4334.9% the thermal exchange between the cooling elements and the plastic part. Additionally, it improves by 51.666% the uniformity and the gradient of the temperature map in comparison with the traditional cooling solution. The results obtained in this paper are in line with the sustainability criteria of green molds, centered on reducing the cycle time and improving the quality of the complex molded parts.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2944
Author(s):  
Abelardo Torres-Alba ◽  
Jorge Manuel Mercado-Colmenero ◽  
Juan de Dios Caballero-Garcia ◽  
Cristina Martin-Doñate

The paper presents a new design of a triple hook-shaped conformal cooling channels for application in optical parts of great thickness, deep cores, and high dimensional and optical requirements. In these cases, the small dimensions of the core and the high requirements regarding warping and residual stresses prevent the use of traditional and standard conformal cooling channels. The research combines the use of a new triple hook-shaped conformal cooling system with the use of three independent conformal cooling sub-systems adapted to the complex geometric conditions of the sliders that completely surround the optical part under study. Finally, the new proposed conformal cooling design is complemented with a small insert manufactured with a new Fastcool material located in the internal area of the optical part beside the optical facets. A transient numerical analysis validates the set of improvements of the new proposed conformal cooling system presented. The results show an upgrade in thermal efficiency of 267.10% in comparison with the traditional solution. The increase in uniformity in the temperature gradient of the surface of the plastic part causes an enhancement in the field of displacement and in the map of residual stresses reducing the total maximum displacements by 36.343% and the Von—Mises maximum residual stress by 69.280% in comparison with the results obtained for the traditional cooling system. Additionally, the new design of cooling presented in this paper reduces the cycle time of the plastic part under study by 32.61%, compared to the traditional cooling geometry. This fact causes a very high economic and energy saving in line with the sustainability of a green mold. The improvement obtained in the technological parameters will make it possible to achieve the optical and functional requirements established for the correct operation of complex optical parts, where it is not possible to use traditional cooling channels or standard conformal cooling layouts.


Sign in / Sign up

Export Citation Format

Share Document