injection molded
Recently Published Documents


TOTAL DOCUMENTS

2766
(FIVE YEARS 395)

H-INDEX

64
(FIVE YEARS 10)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 206
Author(s):  
Chiara E. Ghezzi ◽  
Devon R. Hartigan ◽  
Justin P. Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 280
Author(s):  
Chil-Chyuan Kuo ◽  
Jing-Yan Xu ◽  
Yi-Jun Zhu ◽  
Chong-Hao Lee

Metal additive manufacturing techniques are frequently applied to the manufacturing of injection molds with a conformal cooling channel (CCC) in order to shorten the cooling time in the injection molding process. Reducing the cooling time in the cooling stage is essential to reducing the energy consumption in mass production. However, the distinct disadvantages include higher manufacturing costs and longer processing time in the fabrication of injection mold with CCC. Rapid tooling technology (RTT) is a widely utilized technology to shorten mold development time in the mold industry. In principle, the cooling time of injection molded products is affected by both injection mold material and coolant medium. However, little work has been carried out to investigate the effects of different mold materials and coolant media on the cooling performance of epoxy-based injection molds quantitatively. In this study, the effects of four different coolant media on the cooling performance of ten sets of injection molds fabricated with different mixtures were investigated experimentally. It was found that cooling water with ultrafine bubble is the best cooling medium based on the cooling efficiency of the injection molded parts (since the cooling efficiency is increased further by about 12.4% compared to the conventional cooling water). Mold material has a greater influence on the cooling efficiency than the cooling medium, since cooling time range of different mold materials is 99 s while the cooling time range for different cooling media is 92 s. Based on the total production cost of injection mold and cooling efficiency, the epoxy resin filled with 41 vol.% aluminum powder is the optimal formula for making an injection mold since saving in the total production cost about 24% is obtained compared to injection mold made with commercially available materials.


2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Yousuf Pasha Shaik ◽  
Jens Schuster ◽  
Harshavardhan Reddy Katherapalli ◽  
Aarif Shaik

Contrary to other polymer processing methods, additive manufacturing processes do not require any pressure during the consolidation of layers. This study investigates the effect of high ambient pressure on the consolidation of layers during the FDM process and their analysis of mechanical properties. An experimental setup was arranged, consisting of a 3D printer integrated into a customized Autoclave, to achieve high strength properties for 3D printed parts as like injection-molded specimens. The autoclave can maintain 135 bar of pressure and a maximum temperature of 185 °C. 3D printing with PLA was carried out at 0 bar, 5 bar, and 10 bar. Tensile, flexural, and Charpy tests were conducted on printed specimens, and the effect of pressure and temperature on 3D-printed samples were analyzed. It could be shown that autoclave preheating before printing and autoclave pressure during printing improves the consolidation of layers immensely. The pressure inside the autoclave provokes a more intimate contact between the layer surfaces and results in higher mechanical properties such as yield strength, Young’s modulus, and impact strength. The properties could be raised 100%.


Author(s):  
László Mészáros ◽  
Balázs Tatár ◽  
Krisztina Toth ◽  
Anna Földes ◽  
Krisztina S. Nagy ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Rafał Żurawik ◽  
Julia Volke ◽  
Jan-Christoph Zarges ◽  
Hans-Peter Heim

During injection molding of short glass fiber reinforced composites, a complex structure is formed due to the fiber movement. The resulting fiber orientation can be predicted using various simulation models. However, the models are known to have inadequacies andthe influence of process and model parameters is not clearly and comprehensively described. In this study, the aforementioned model and process parameters are investigated to determine the dependencies of the individual influences on the real and simulated fiber orientation. For this purpose, specimens are injection molded at different process parameters. Representative regions of the specimens are measured using X-ray microtomography and dynamic image analysis to determine the geometric properties of the fibers as well as their orientations. Furthermore, simulations are performed with the simulation software Moldflow® using different mesh types and densities as well as varying parameters of the MRD model to represent the real fiber orientations. The results show that different orientation areas arise in the samples, which cannot be represented with a simulation varying only one parameter. Several simulations must be carried out in order to represent flow regions occurring in the specimen as realistically as possible.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Jian Wang ◽  
Qianchao Mao ◽  
Nannan Jiang ◽  
Jinnan Chen

The reinforcement and matrix of a polymer material can be composited into a single polymer composite (SPC), which is light weight, high strength, and has easy recyclability. The insert injection molding process can be used to realize the multiple production of SPC products with a short cycle time and wide processing temperature window. However, injection molding is a very complicated process; the influence of several important parameters should be determined to help in the future tailoring of SPCs to specific applications. The effects of varying barrel temperature, injection pressure, injection speed, and holding time on the properties of the insert-injection molded polypropylene (PP) SPC parts were investigated. It was found that the sample weight and tensile properties of the PP SPCs varied in different rules with the variations of these four parameters. The barrel temperature has a significant effect, followed by the holding time and injection pressure. Suitable parameter values should be determined for enhanced mechanical properties. Based on the tensile strength, a barrel temperature of 260 °C, an injection pressure of 127.6 MPa, an injection speed of 0.18 m/s, and a holding time of 60 s were determined as the optimum processing conditions. The best tensile strength and peel strength were up to 120 MPa and 19.44 N/cm, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4462
Author(s):  
Maria del Carmen Morcillo ◽  
Ramón Tejada ◽  
Diego Lascano ◽  
Daniel Garcia-Garcia ◽  
David Garcia-Sanoguera

The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development of composites of bio-based high density polyethylene (BioHDPE) with different contents of pinecone (5, 10, and 30 wt.%). The blends were produced by extrusion and injection-molded processes. With the objective of improving the properties of the materials, a compatibilizer has been used, namely polyethylene grafted with maleic anhydride (PE-g-MA 2 phr). The effect of the compatibilizer in the blend with 5 wt.% has been compared with the same blend without compatibilization. Mechanical, thermal, morphological, colorimetric, and wettability properties have been analyzed for each blend. The results showed that the compatibilizer improved the filler–matrix interaction, increasing the ductile mechanical properties in terms of elongation and tensile strength. Regarding thermal properties, the compatibilizer increased thermal stability and improved the behavior of the materials against moisture. In general, the pinecone materials obtained exhibited reddish-brown colors, allowing their use as wood plastic composites with a wide range of properties depending on the filler content in the blend.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4444
Author(s):  
Marcos M. Hernandez ◽  
Nevin S. Gupta ◽  
Kwan-Soo Lee ◽  
Aaron C. Pital ◽  
Babetta L. Marrone ◽  
...  

The waste generated by single-use plastics is often non-recyclable and non-biodegradable, inevitably ending up in our landfills, ecosystems, and food chain. Through the introduction of biodegradable polymers as substitutes for common plastics, we can decrease our impact on the planet. In this study, we evaluate the changes in mechanical and thermal properties of polyhydroxybutyrate-based composites with various additives: Microspheres, carbon fibers or polyethylene glycol (2000, 10,000, and 20,000 MW). The mixtures were injection molded using an in-house mold attached to a commercial extruder. The resulting samples were characterized using microscopy and a series of spectroscopic, thermal, and mechanical techniques. We have shown that the addition of carbon fibers and microspheres had minimal impact on thermal stability, whereas polyethylene glycol showed slight improvements at higher molecular weights. All of the composite samples showed a decrease in hardness and compressibility. The findings described in this study will improve our understanding of polyhydroxybutyrate-based composites prepared by injection molding, enabling advancements in integrating biodegradable plastics into everyday products.


Sign in / Sign up

Export Citation Format

Share Document