Numerical prediction of the galling of aluminium alloys in cold strip drawing

2022 ◽  
Vol 73 ◽  
pp. 340-353
Author(s):  
Oussama Filali ◽  
André Dubois ◽  
Marcel Moghadam ◽  
Chris V. Nielsen ◽  
Laurent Dubar
2021 ◽  
Vol 5 (2) ◽  
pp. 29
Author(s):  
Yutian Wu ◽  
Viktor Recklin ◽  
Peter Groche

In sheet metal forming, free deformation of the sheet takes place frequently without contact with forming tools. The pre-straining resulting from the free deformation leads to a surface roughening of the sheet metal. It is assumed that the roughening has an influence on friction and wear behavior of the following forming process as well as the painting quality after the manufacturing. In this paper, a numerical prediction based on a polycrystalline model is first proposed to predict the effect of surface roughing based on the material data of the as-received state of the sheet metal. Different states of strain are analyzed and the numerical result is validated through experimental evaluation. Besides the numerical prediction, the friction behavior after pre-straining is evaluated in strip drawing tests and the coefficient of friction (COF) is calculated. For interpretation of the measured COF, the surface roughness after the friction test and the surface image are evaluated by a transparent toolset. It is shown that the surface transformation as a result of pre-straining has a negative influence on the lubricating effect of the sheet metal and degrades the friction behavior. Finally, the influence of the strain-induced surface roughening on wear is discussed based on wear testing in strip drawing test with draw bead geometry.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


1974 ◽  
Author(s):  
Sarah Lichtenstein ◽  
Timothy C. Earle ◽  
Paul Slovic

Sign in / Sign up

Export Citation Format

Share Document