superplastic forming
Recently Published Documents


TOTAL DOCUMENTS

817
(FIVE YEARS 73)

H-INDEX

32
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


2022 ◽  
Vol 73 ◽  
pp. 385-394
Author(s):  
Zhihao Du ◽  
Chunxu Wang ◽  
Qing Liu ◽  
Shan Wang ◽  
Yang Liu ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhaoyang Lu ◽  
Xuqiang Huang ◽  
Jingzhe Huang

Superplasticity is characterized by an elongation to failure of >300% and a measured strain rate sensitivity (SRS), close to 0.5. The superplastic flow is controlled by diffusion processes; it requires the testing temperature of 0.5Tm or greater where Tm is the absolute melting temperature of metals. It is well established that a reduction in grain size improves the optimum superplastic response by lowering the deformation temperature and/or raising the strain rate. The low-temperature superplasticity (LTSP) is attractive for commercial superplastic forming, in view of lowering energy requirement, increasing life for conventional or cheaper forming dies, improving the surface quality of structural components, inhibiting quick grain growth and solute-loss from the surface layers, thus resulting in better post-forming mechanical properties. This paper will summarize the dependence of superplasticity on grain size and shape in various metallic materials, including ferrous and non-ferrous alloys, which has been considered as an effective strategy to enable the LTSP.


2021 ◽  
Vol 11 (4s) ◽  
pp. 548-552
Author(s):  
Guzel Murzina ◽  
Venera Ganieva ◽  
Alexey Kruglov ◽  
Farid Enikeev

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Balkrishna C. Rao

Manufacturing is a crucial activity of product development that feeds into and is also influenced by the design process. Any material conservation gained during manufacturing directly affects the green credentials of a product. Manufacturing waste can be contrived to approach zero through a recently developed frugal design approach that quantifies resource conservation at all stages of development of a product engineered for frugality. Accordingly, this effort presents frugal manufacturing (FM), integral to the frugal design approach , for utmost reduction of waste while aiming for good surface integrity, better properties, minimal number of processes and low cost. Other than saving on energy and hence emissions, the new concept of FM also goes beyond current near net shape technologies, which advocate mainly for zero wastage and suitable properties while using a narrow range of manufacturing processes. Case studies involving high-speed machining , superplastic forming and additive manufacturing of aerospace alloys have been presented that bring out the features and benefits of FM. As such the multipronged objectives of FM should be dovetailed with those of smart factories for creating novel technologies that abet widespread sustainable development. Such enhancement of the smart factories concept has been argued to support unusual applications such as the fight against pandemics including the current one involving COVID-19.


2021 ◽  
Vol 6 (4) ◽  
pp. 251-261
Author(s):  
Manh Tien Nguyen ◽  
Truong An Nguyen ◽  
Duc Hoan Tran ◽  
Van Thao Le

This work aims to optimize the process parameters for improving the wall thickness distribution of the sheet superplastic forming process of AA7075 alloy. The considered factors include forming pressure p (MPa), deformation temperature T (°C), and forming time t (minutes), while the responses are the thinning degree of the wall thickness ε (%) and the relative height of the product h*. First, a series of experiments are conducted in conjunction with response surface method (RSM) to render the relationship between inputs and outputs. Subsequently, an analysis of variance (ANOVA) is conducted to verify the response significance and parameter effects. Finally, a numerical optimization algorithm is used to determine the best forming conditions. The results indicate that the thinning degree of 13.121% is achieved at the forming pressure of 0.7 MPa, the deformation temperature of 500°C, and the forming time of 31 minutes.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 946
Author(s):  
Donato Sorgente

In both academic and industrial research endeavours, driving forces are essential to keep the interest alive for a specific topic [...]


Sign in / Sign up

Export Citation Format

Share Document