Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem

2016 ◽  
Vol 163 ◽  
pp. 80-94 ◽  
Author(s):  
Arseny A. Kubryakov ◽  
Sergey V. Stanichny ◽  
Andrey G. Zatsepin ◽  
Viacheslav V. Kremenetskiy
2019 ◽  
Vol 46 (1) ◽  
pp. 58-69
Author(s):  
V. L. Dorofeev ◽  
L. I. Sukhikh

Herein, we present a simulation of the dynamics of Black Sea ecosystems using a three-dimensional interdisciplinary model that assimilates satellite color scanner measurements. Calculations were performed for the fifteen years from 1998 and a set of 3-d biogeochemical fields of the Black Sea were generated on a regular grid with a discreteness time of 1 day. Analyses of core biogeochemical parameters of the marine ecosystem were then performed. The qualities of received fields were evaluated using comparisons with existing data from in situ measurements.


Author(s):  
Z. Chen ◽  
Marco Venturi ◽  
R. Bijker

The Blue Stream pipeline project is a gas transportation system for the delivery of processed gas from a gas station in the southern Russia across the Black Sea to Ankara, Turkey. The Turkish landfall of the offshore pipeline in the Black Sea is located near Samsun, see Figure 1 for the pipeline route. One of the main aspects of the design of pipeline through a morphologically dynamic area such as landfall is the required burial depth (Chen et al, 1998, 2001 and Bijker et al 1995). The burial depth is the result of an optimisation between: • safety of the pipeline (which often requires a large burial depth), and • environmental impact and trenching costs (a small burial depth means less dredging and less environmental impact). This paper presents a method of predicting the future extremely low seabed level in a morphologically dynamic landfall area, which is required to determine the burial depth of the pipeline. Both short term and long term coast evolution were assessed to quantify the expected lowest seabed level along the pipeline route in the landfall area during the pipeline lifetime of 50 years. The results were used to determine the required pipeline burial depth. The long term morphological changes originate from long term variations in the morphological system (e.g. river input), gradient in the longshore sediment transport and long term variations in the hydrodynamic conditions. The short-term morphological changes originate from beach profile variations due to cross-shore sediment transport as a result of seasonal and yearly variations in the wave and current conditions. Numerical modelling was applied to compute the longshore and cross-shore sediment transport rates and the resulting coastline evolution and cross-shore profile evolution. The longshore transport model was validated using the available data on the coastline changes in the past 20 years, which was derived from the satellite images. The 50-year lowest seabed level has been determined as the sum of the coastline retreat and the cross-shore evolution in the next 50 years.


2001 ◽  
Vol 11 (3) ◽  
pp. 249-258
Author(s):  
A. M. Suvorov ◽  
A. Kh. Khaliulin ◽  
E. A. Godin

2011 ◽  
Vol 20 (6) ◽  
pp. 435-450
Author(s):  
O. G. Moiseenko ◽  
S. K. Konovalov ◽  
O. N. Kozlovskaya

2016 ◽  
Vol 84 (1) ◽  
pp. 69-92 ◽  
Author(s):  
Adem Akpınar ◽  
Bilal Bingölbali

Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Sign in / Sign up

Export Citation Format

Share Document