21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 4
Latest Publications


TOTAL DOCUMENTS

97
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791836142, 0791835995

Author(s):  
Ibrahim Mohamed ◽  
Mahmoud Haddara ◽  
Christopher D. Williams ◽  
Michael Mackay

This paper describes a parametric identification tool for predicting the hydrodynamic forces acting on a submarine model using its motion history. The tool uses a neural network to identify the hydrodynamic forces and moments; the network was trained with data obtained from multi-degree-of-freedom captive maneuvering tests. The characteristics of the trained network are demonstrated through reconstruction of the force and moment time histories. This technique has the potential to reduce experimental time and cost by enabling a full hydrodynamic model of the vehicle to be obtained from a relatively limited number of test maneuvers.


Author(s):  
Quan-Ming Miao ◽  
Allen T. Chwang

The reflection and transmission of ship waves by vertical floating barriers located on both sides of a fairway are investigated by the modified Dawson’s method in this paper. The free surface is specially treated to take into account the floating barriers. The wave pattern and the wave energy density between and outside the barriers are obtained. It is found that the reflection and transmission performance of a barrier is associated with its width and height. For a wider or higher barrier, more ship waves are reflected by it. A vertical floating barrier with a reasonable width and height can reduce ship waves in the outer region very efficiently.


Author(s):  
K. A. Roopsekhar ◽  
V. Sundar

The hydrodynamic pressures due to regular waves around the circumference of a pipeline near a sloping rigid bed and placed parallel to the wave direction have been measured. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces were evaluated. The effects of relative clearance of pipe from the bed and its relative position from the toe of the sloping bed on the pressures and forces on the pipeline as a function scattering parameter and wave steepness are reported. The reflection characteristics of the sloping bed in the presence of the pipeline are reported as a function of surf similarity parameter and compared with the results from existing literature. The details of the model setup, experimental procedure, results and discussion are presented in this paper.


Author(s):  
M. L. Nuckols ◽  
K. W. VanZandt

The U.S. Navy is committed to maintaining the capability of rescuing survivors from a disabled submarine, including situations where the disabled submarine becomes internally pressurized due to flooding, leakage of compressed gas supplies, or through use of auxiliary breathing systems. Efficient submarine rescue requires that pressurized crewmembers be decompressed more rapidly than current decompression procedures allow when using air. The Navy Experimental Diving Unit in Panama City, FL has shown that crew decompression can be accelerated significantly by pre-breathing oxygen. Unfortunately, such oxygen pre-breathing can result in oxygen buildup in the cabin atmospheres of the submarine, and/or rescue chamber through leakage around the face seal of the oxygen masks. High levels of oxygen can create hazardous conditions within the cabin atmosphere due to fire potential and/or oxygen toxicity concerns. This paper addresses the concept development of an oxygen “metabolizer” using a hydrogen catalytic reactor to consume excess oxygen within the closed cabin atmosphere of a rescue vehicle. Such a catalytic reactor has also been shown to give an effective method of reducing the level of oxygen in diver breath heating and diver whole-body heating systems.


Author(s):  
B. W. Byrne ◽  
G. T. Houlsby

In recent years there has been a worldwide increase in the pressure to develop sources of renewable energy. The UK government is committed to ensuring that ten percent of UK energy consumption will be supplied by renewables by the year 2010. Central to this commitment is the need to develop wind farms particularly in the offshore environment. Moving offshore will allow very large wind turbines capable of supplying 2 MW (first generation) to 5 MW (second generation) of power to be installed in large farms consisting of up to fifty or more turbines. In contrast to typical oil and gas structures the foundation may account for up to forty percent of the projected installed cost. The weight of each structure is very low, so the applied vertical load on the foundation will be small compared to the moment load derived from the wind and waves. Further, it will be necessary to have a single design that can be mass-produced over each site rather than have each foundation individually engineered. In combination these points lead to a very interesting engineering problem where the design of the foundation becomes crucial to the economics of the project. One solution is to use conventional piling. However, at some sites it may prove more economical to use shallow foundations, and, in particular suction installed skirted foundations [1]. It will be necessary to develop an adequate design framework for these no vel foundations under the relevant combinations of load so that the optimum structural configuration can be achieved. At Oxford University a program of research on skirted foundations has been underway for the last five years, and much progress has been made on the understanding of this type of foundation under combined loading. This progress has been in both experimental and theoretical areas. This paper explores various structural options that might be used for the wind turbine application. These different options lead to different loading conditions on the foundations. Experiments investigating these different loading conditions are explored. A theoretical approach that describes the experimental results in a way that can be implemented in typical structural analyses programs is outlined. Finally details of a major research program into developing the necessary design guidelines for foundations for offshore wind turbines is described.


Author(s):  
Dimitris Spanos ◽  
Apostolos Papanikolaou ◽  
George Tzabiras

The effect of trapped water on deck or the interior compartments of ships on ship motions is closely investigated by use of a non-linear numerical simulation method. The employed method enables the efficient simulation of the wave excited, coupled ship – trapped water motions and proves to be a very valuable tool for the assessment of the survivability of flooded ships in waves. A detailed study has been carried out to more carefully investigate the coupling effects between the ship and the floodwater mass that can be expressed through a resultant interaction force. This interaction force has been approximated both by a simplified model employed by the present simulation method and also by a more accurate CFD code and satisfactory agreement between the results of both approaches has been obtained.


Author(s):  
Deborah J. Wood

In nature where thermoclines exist an internal wave may form, and if a sloping bottom is also present then a gravity current may occur. In this study we use a Navier-Stokes solver to solve Eulers equations to simulate the generation and evolution of such a wave. The thermoclines used in this study are similar to those seen in nature except scaled down to the laboratory scale used by some ongoing experiments. We find that the Navier-Stokes solver generates and evolves a wave similar to experimental observations. The head of the gravity current is dominated by medium density fluid with the thermocline thickness growing and becoming thickest at the centre of the head. Maximum velocities of approximately 0.5 of the linear wave speed are found which are similar to experimental and field observations.


Author(s):  
Francis Noblesse ◽  
Chi Yang ◽  
Dane Hendrix ◽  
Rainald Lo¨hner

The fundamental problem of determining the free-surface potential flow that corresponds to a given flow at a ship hull surface is reconsidered. Stokes’ theorem is used to transform the dipole distribution over the ship hull surface in the classical boundary-integral representation of the velocity potential. This Stokes’ transformation yields a weakly-singular boundary-integral representation that defines the potential in terms of the Green function G and related functions that are no more singular than G. Accordingly, the velocity representation only involves functions that are no more singular than ∇G.


Author(s):  
Jan O. de Kat ◽  
Dirk-Jan Pinkster ◽  
Kevin A. McTaggart

The objective of this paper is to apply a methodology aimed at the probabilistic capsize assessment of two naval ships: a frigate and a corvette. Use is made of combined knowledge of the wave and wind climate a ship will be exposed to during its lifetime and of the physical behavior of that ship in the various sea states it is likely to encounter. This includes the behavior in extreme wave conditions that have a small probability of occurrence, but which may be critical to the safe operation of a ship. Time domain simulations provide the basis for deriving short-term and long-term statistics for extreme roll angles. The numerical model is capable of predicting the 6 DOF behavior of a steered vessel in wind and waves, including conditions that may lead to broaching and capsizing.


Author(s):  
Adam J. Rinehart ◽  
Peter B. Keating

A full scale experimental study has demonstrated that long, unrestrained pipeline dents typically experience fatigue cracking in the dent contact region and have significantly shorter fatigue lives compared to other dent types studied. Furthermore, these dents often fully reround under normal pipeline operating pressures, making them difficult to reliably detect and assess using existing depth-based approaches. Several conditions unique to the dent contact region accelerate fatigue damage accumulation and are considered in a case-specific long dent fatigue life prediction method. First, the contact region develops significant bending stresses that contribute to a higher rate of fatigue crack growth. Second, history dependent, thru-thickness residual bending stresses that may have a significant influence on fatigue behavior are present in the contact region as a result of plastic deformation associated with dent formation and subsequent rebounding. A method for predicting the fatigue life of long dents that accounts for these factors is presented here and is used to analyze specific cases for which laboratory data is available. Nonlinear finite element modelling of the dent life cycle, including the indentation and rebounding phases, is used to determine local stress range behaviors and residual stress distributions. The application of appropriate fracture mechanics based models of fatigue is discussed and demonstrated. Fatigue life predictions are made on a case by case basis for situations studied in the laboratory so that the validity and accuracy of the approach presented here may be studied.


Sign in / Sign up

Export Citation Format

Share Document