atmospheric n deposition
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 24)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Changchun Song ◽  
Yuqiu Zhang ◽  
Zhengru Ren ◽  
Haining Lu ◽  
Xu Chen ◽  
...  

Abstract PurposeNitrogen (N) enrichment through either artificial N application or atmospheric N deposition often increases ecosystem aboveground net primary productivity (ANPP). Therefore, results from N addition experiments have been used to assess the effects of atmospheric N deposition on ecosystems. However, the frequency of atmospheric N deposition is higher than that of artificial N addition. Whether the frequency of N addition alters the long-term response of ecosystem ANPP remains unclear. MethodsWe conducted a N addition frequency experiment from 2010 in a temperate grassland, northern China. Plant community ANPP was collected in 2019 and 2020, and soil physicochemical properties were measured in 2020. ResultsPlant community ANPP was significantly enhanced by N addition, whereas these increments declined with the frequency of N addition. The responses of the grasses ANPP to the frequency of N addition were similar to those of the plant community ANPP. Forbs ANPP was not significantly altered by the frequency of N addition. Meanwhile, soil ammonium and nitrate (NO3−–N) concentrations decreased with increasing N addition frequency, while the soil water content (SWC) and pH were similar among the frequencies of N addition. Moreover, SWC and soil NO3−–N jointly promoted grasses ANPP, ultimately increasing the plant community ANPP. ConclusionOur findings extend the water and N co-limitation hypothesis by specifying the preference for NO3−–N in arid/semi-arid regions. This study also illustrates that a higher frequency of N addition is more suitable for assessing the long-term impacts of atmospheric N deposition on ecosystems.


2021 ◽  
Author(s):  
Yinliu Wang ◽  
Signe Lett ◽  
Kathrin Rousk

Abstract Moss-associated nitrogen (N2) fixation is one of the main inputs of new N in pristine ecosystems that receive low amounts of atmospheric N deposition. Previous studies have shown that N2 fixation is inhibited by inorganic N (IN) inputs, but if N2 fixation in mosses is similarly affected by organic N (ON) remains unknown. Here, we assessed N2 fixation in two dominant mosses in boreal forests (Pleurozium schreberi and Sphagnum capillifolium) in response to different levels of N, simulating realistic (up to 4 kg N ha−1 yr−1) and extreme N deposition rates in pristine ecosystems (up to 20 kg N ha−1 yr−1) of IN (NH4NO3) and ON (alanine and urea). We also assessed if N2 fixation can recover from the N additions. In the realistic scenario, N2 fixation was inhibited by increasing NH4NO3 additions in P. schreberi but not in S. capillifolium, and alanine and urea stimulated N2 fixation in both moss species. In contrast, in the extreme N additions, increasing N inputs inhibited N2 fixation in both moss species and all N forms. Nitrogen fixation was more sensitive to N inputs in P. schreberi than in S. capillifolium and was higher in the recovery phase after the realistic compared to the extreme N additions. These results demonstrate that N2 fixation in mosses is less sensitive to organic than inorganic N inputs and highlight the importance of considering different N forms and species-specific responses when estimating the impact of N inputs on ecosystem functions such as moss-associated N2 fixation.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1427
Author(s):  
Chunju Cai ◽  
Zhihan Yang ◽  
Liang Liu ◽  
Yunsen Lai ◽  
Junjie Lei ◽  
...  

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2749
Author(s):  
Jin-Jin Li ◽  
Fei Dong ◽  
Ai-Ping Huang ◽  
Qiu-Yue Lian ◽  
Wen-Qi Peng

The Danjiangkou Reservoir in China is characterized by significantly high concentrations of total nitrogen (TN), and the sources are not clear. Recently, research on this reservoir has focused on the N cycle, the spatial and temporal distribution characteristics of N, and the factors influencing N concentration. Significant temporal and spatial differences in TN concentrations exist, both in the reservoir area and the tributaries. N concentration in the area is affected by numerous factors, including N transported by tributaries, nonpoint source pollution around the reservoir, internal N release, and atmospheric N deposition. Moreover, a dam heightening project led to a larger water-fluctuation zone and more bays in the reservoir, directly affecting its N cycle. However, further research is required to explore the N cycle on a large watershed scale in the Danjiangkou Reservoir and upper stream areas, determine N pollution sources using satellite remote sensing, and conduct simulations of a water body N cycle model based on data fusion. Although the issue of excessive TN has been alleviated to some extent by the South-North Water Diversion Project, the excessively high TN concentrations require more research to aid the implementation of N-reducing strategies.


2021 ◽  
Vol 4 ◽  
Author(s):  
TaeOh Kwon ◽  
Hideaki Shibata ◽  
Sebastian Kepfer-Rojas ◽  
Inger K. Schmidt ◽  
Klaus S. Larsen ◽  
...  

Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 802
Author(s):  
Fangtao Wu ◽  
Changhui Peng ◽  
Weiguo Liu ◽  
Zhihao Liu ◽  
Hui Wang ◽  
...  

Understanding the impacts of nitrogen (N) addition on soil respiration (RS) and its temperature sensitivity (Q10) in tropical forests is very important for the global carbon cycle in a changing environment. Here, we investigated how RS respond to N addition in a tropical montane rainforest in Southern China. Four levels of N treatments (0, 25, 50, and 100 kg N ha−1 a−1 as control (CK), low N (N25), moderate N (N50), and high N (N100), respectively) were established in September 2010. Based on a static chamber-gas chromatography method, RS was measured from January 2015 to December 2018. RS exhibited significant seasonal variability, with low RS rates appeared in the dry season and high rates appeared in the wet season regardless of treatment. RS was significantly related to the measured soil temperature and moisture. Our results showed that soil RS increased after N additions, the mean annual RS was 7% higher in N25 plots, 8% higher in N50 plots, and 11% higher in N100 plots than that in the CK plots. However, the overall impacts of N additions on RS were statistically insignificant. For the entire study period, the CK, N25, N50, and N100 treatments yielded Q10 values of 2.27, 3.45, 4.11, and 2.94, respectively. N addition increased the temperature sensitivity (Q10) of RS. Our results suggest that increasing atmospheric N deposition may have a large impact on the stimulation of soil CO2 emissions from tropical rainforests in China.


2021 ◽  
Vol 7 (6) ◽  
pp. 412
Author(s):  
Clémentine Lepinay ◽  
Lucie Jiráska ◽  
Vojtěch Tláskal ◽  
Vendula Brabcová ◽  
Tomáš Vrška ◽  
...  

Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.


2021 ◽  
Vol 4 ◽  
Author(s):  
Nina L. Bingham ◽  
Eric W. Slessarev ◽  
Peter M. Homyak ◽  
Oliver A. Chadwick

Models suggest that rock-derived nitrogen (N) inputs are of global importance to ecosystem N budgets; however, field studies demonstrating the significance of rock N inputs are rare. We examined rock-derived N fluxes in soils derived from sedimentary rocks along a catena formed under a semi-arid climate. Our measurements demonstrate that there are distinct and traceable pools of N in the soil and bedrock and that the fraction of rock-derived N declines downslope along the catena. We used geochemical mass balance weathering flux measurements to estimate a rock-derived N flux of 0.145 to 0.896 kg ha–1 yr–1 at the ridgecrest. We also developed independent N flux estimates using a 15N-based isotope mixing model. While geochemical mass-balance-based estimates fell within the 95% confidence range derived from the isotope mixing model (−1.1 to 44.3 kg ha–1 yr–1), this range was large due to uncertainty in values for atmospheric 15N deposition. Along the catena, N isotopes suggest a diminishing effect of rock-derived N downslope. Overall, we found that despite relatively large N pools within the saprolite and bedrock, slow chemical weathering and landscape denudation limit the influence of rock-derived N, letting atmospheric N deposition (7.1 kg ha–1 yr–1) and N fixation (0.9–3.1 kg ha–1 yr–1) dominate N inputs to this grassland ecosystem.


2021 ◽  
Vol 18 (9) ◽  
pp. 2859-2870
Author(s):  
Zixun Chen ◽  
Xuejun Liu ◽  
Xiaoqing Cui ◽  
Yaowen Han ◽  
Guoan Wang ◽  
...  

Abstract. Variations in precipitation and atmospheric N deposition affect water and N availability in desert and thus may have significant effects on desert ecosystems. Haloxylon ammodendron is a dominant plant in Asian desert, and addressing its physiological acclimatization to the changes in precipitation and N deposition can provide insight into how desert plants adapt to extreme environments by physiological adjustment. Carbon isotope ratio (δ13C) in plants has been suggested as a sensitive long-term indicator of physiological acclimatization. Therefore, this study evaluated the effect of precipitation change and increasing atmospheric N deposition on δ13C of H. ammodendron. Furthermore, H. ammodendron is a C4 plant; whether its δ13C can indicate water use efficiency (WUE) has not been addressed. In the present study, we designed a field experiment with a completely randomized factorial combination of N and water and measured δ13C and gas exchange of H. ammodendron. Then we calculated the degree of bundle-sheath leakiness (φ) and WUE of the assimilating branches of H. ammodendron. δ13C and φ remained stable under N and water supply, while N addition, water addition and their interaction affected gas exchange and WUE in H. ammodendron. In addition, δ13C had no correlation with WUE. These results were associated with the irrelevance between δ13C and the ratio of intercellular to ambient CO2 concentration (ci / ca), which might be caused by a special value (0.37) of the degree of bundle-sheath leakiness (φ) or a lower activity of carbonic anhydrase (CA) of H. ammodendron. In conclusion, δ13C of H. ammodendron is not sensitive to global change in precipitation and atmospheric N deposition and cannot be used for indicating its WUE.


2021 ◽  
Vol 18 (6) ◽  
pp. 2075-2090
Author(s):  
Matthias Volk ◽  
Matthias Suter ◽  
Anne-Lena Wahl ◽  
Seraina Bassin

Abstract. Multiple global change drivers affect plant productivity of grasslands and thus ecosystem services like forage production and the soil carbon sink. Subalpine grasslands seem particularly affected and may serve as a proxy for the cold, continental grasslands of the Northern Hemisphere. Here, we conducted a 4-year field experiment (AlpGrass) with 216 turf monoliths, subjected to three global change drivers: warming, moisture, and N deposition. Monoliths from six different subalpine pastures were transplanted to a common location with six climate scenario sites (CSs). CSs were located along an altitudinal gradient from 2360 to 1680 m a.s.l., representing an April–October mean temperature change of −1.4 to +3.0 ∘C, compared to CSreference with no temperature change and with climate conditions comparable to the sites of origin. To uncouple temperature effects along the altitudinal gradient from soil moisture and soil fertility effects, an irrigation treatment (+12 %–21 % of ambient precipitation) and an N-deposition treatment (+3 kg and +15 kg N ha−1 a−1) were applied in a factorial design, the latter simulating a fertilizing air pollution effect. Moderate warming led to increased productivity. Across the 4-year experimental period, the mean annual yield peaked at intermediate CSs (+43 % at +0.7 ∘C and +44 % at +1.8 ∘C), coinciding with ca. 50 % of days with less than 40 % soil moisture during the growing season. The yield increase was smaller at the lowest, warmest CS (+3.0 ∘C) but was still 12 % larger than at CSreference. These yield differences among CSs were well explained by differences in soil moisture and received thermal energy. Irrigation had a significant effect on yield (+16 %–19 %) in dry years, whereas atmospheric N deposition did not result in a significant yield response. We conclude that productivity of semi-natural, highly diverse subalpine grassland will increase in the near future. Despite increasingly limiting soil water content, plant growth will respond positively to up to +1.8 ∘C warming during the growing period, corresponding to +1.3 ∘C annual mean warming.


Sign in / Sign up

Export Citation Format

Share Document