A tool path generation strategy for three-axis ball-end milling of free-form surfaces

2008 ◽  
Vol 208 (1-3) ◽  
pp. 259-263 ◽  
Author(s):  
Tao Chen ◽  
Zhiliang Shi
2010 ◽  
Vol 102-104 ◽  
pp. 544-549 ◽  
Author(s):  
Chun Jiang Zhou ◽  
Hong Chun Chen

The development of surface high-speed machining has put forward higher demands for uniform cutting load and smooth cutting tool path. Most current tool-path planning methods are based on constant scallop height, but they have the disadvantage of path point redundancy during the path discretization process. To overcome the problem, a tool path generation method of equal approximation error in each step for free-form surface is presented based on geodesic principle and curvature judgment. In this method, the NURBS curve is employed to realize smooth transition for adjacent two tool paths in high-speed machining. A certain angle of inclination of flat-end milling cutter during multi-axis machining improves the machining efficiency. Because of the advantage of this machining condition, the cutter location point generation algorithm during the machining condition is given by the method. The method is verified and simulated by C++. Experiment results proved that it can obtain uniform cutting load and continuous smooth cutting tool path during surface high-speed machining by the proposed method.


2003 ◽  
Vol 35 (2) ◽  
pp. 141-153 ◽  
Author(s):  
S. Ding ◽  
M.A. Mannan ◽  
A.N. Poo ◽  
D.C.H. Yang ◽  
Z. Han

Author(s):  
Tao Huang ◽  
Xiao-Ming Zhang ◽  
Jürgen Leopold ◽  
Han Ding

In five-axis milling process, the tool path generated by a commercial software seldom takes the dynamics of the machining process into account. The neglect of process dynamics may lead to milling chatter, which causes overcut, quick tool wear, etc., and thus damages workpiece surface and shortens tool life. This motivates us to consider dynamic constraints in the tool path generation. Tool orientation variations in five-axis ball-end milling influence chatter stability and surface location error (SLE) due to the varying tool-workpiece immersion area and cutting force, which inversely provides us a feasible and flexible way to suppress chatter and SLE. However, tool orientations adjustment for suppression of chatter and SLE may cause drastic changes of the tool orientations and affects surface quality. The challenge is to strike a balance between the smooth tool orientations and suppression of chatter and SLE. To overcome the challenge, this paper presents a minimax optimization approach for planning tool orientations. The optimization objective is to obtain smooth tool orientations, by minimizing the maximum variation of the rotational angles between adjacent cutter locations, with constraints of chatter-free and SLE threshold. A dedicated designed ball-end milling experiment is conducted to validate the proposed approach. The work provides new insight into the tool path generation for ball-end milling of sculpture surface; also it would be helpful to decision-making for process parameters optimization in practical complex parts milling operations at shop floor.


Author(s):  
Yuki Takanashi ◽  
Hideki Aoyama

Abstract Machining data (NC program) is generated by a CAM system, which generates the tool path from the target shape as a plane approximation surface instead of a free-form surface. Owing to this plane approximation, machining accuracy is reduced. In this paper, we propose a method to process the shape with high accuracy by defining the areas where accuracy is not required as a plane approximation surface and defining the part where accuracy is required as free-form surfaces.


2012 ◽  
Vol 67 (9-12) ◽  
pp. 2469-2476 ◽  
Author(s):  
Jinting Xu ◽  
Xiangkui Zhang ◽  
Shunke Wang ◽  
Jianhuang Wu

Author(s):  
Xiang Wu ◽  
Wansheng Zhao ◽  
R. Du

Shrouded turbine blisk is an important component for liquid-propellant rocket engine, airplane engine and some other high-power turbine machines. It is made from high-temperature alloy (e.g., nickel-base alloy and titanium alloy) and hence, is difficult to machine. In addition, its geometrical shape is complicated involving many semi-enclosed, twisted, free-form surfaces. In order to ensure the best performance, its dimension accuracy is very demanding. For the moment, an effective way to manufacture shrouded turbine blisk is Electrical Discharge Machining (EDM) using form tools (form electrodes). However, owing to its complicated geometry, existing commercial CAM systems cannot generate the interference-free tool path for it. In this paper, a new tool path generation method is presented. The new method is base on the quadratic programming and CNC multi-axis simultaneous control. It generates tool path in two steps. First, a feasible zone is generated by coarse search, which gives an elementary path for form tool feed. Then, within the feasible zone the actual NC tool path is found by fine search through CNC multi-axis simultaneous control simulation. In practice, a form tool follows the interference-free tool path moving into the twisted passages of blisk for machining, while the blisk is turning by a CNC turntable. The new method is validated experimentally. Compared to the existing methods, it can obtain high machining efficiency and high machining accuracy. Experimental results indicate that the new method is accurate. This new method can also be applied to many other machining applications involving complicated geometrical shape.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4038
Author(s):  
Balázs Mikó ◽  
Bálint Varga ◽  
Wojciech Zębala

The machining of free form surfaces is one of the most challenging problems in the field of metal cutting technology. The produced part and machining process should satisfy the working, accuracy, and financial requirements. The accuracy can describe dimensional, geometrical, and surface roughness parameters. In the current article, three of them are investigated in the case of the ball-end milling of a convex and concave cylindrical surface form 42CrMo4 steel alloy. The effect of the tool path direction is investigated and the other cutting parameters are constant. The surface roughness and the geometric error are measured by contact methods. Based on the results, the surface roughness, dimensional error, and the geometrical error mean different aspects of the accuracy, but they are not independent from each other. The investigated input parameters have a similar effect on them. The regression analyses result a very good liner regression for geometric errors and shows the importance of surface roughness.


Sign in / Sign up

Export Citation Format

Share Document