Numerical method coupling finite elements and boundary elements to model forming process tools

2009 ◽  
Vol 209 (7) ◽  
pp. 3226-3235 ◽  
Author(s):  
Dominique Bigot ◽  
Jean-Marc Roelandt ◽  
Hocine Kebir
1992 ◽  
Vol 2 (11) ◽  
pp. 2035-2044 ◽  
Author(s):  
A. Nicolet ◽  
F. Delincé ◽  
A. Genon ◽  
W. Legros

1996 ◽  
Vol 75 (2) ◽  
pp. 153-174 ◽  
Author(s):  
Ulrich Brink ◽  
Carsten Carstensen ◽  
Erwin Stein

2019 ◽  
Vol 21 (2) ◽  
pp. 1-5
Author(s):  
Marcin Nabrdalik ◽  
Michał Sobociński

Abstract The paper presents analysis of stress distribution in the friction node of knee joint endoprosthesis where sleds are made of various titanium alloys and CoCrMo cooperate with spherical polyethylene inserts. Currently used titanium alloys consists of Nb, Ta, Zr or Mo and with lesser value of Young’s modulus than Ti6Al4V alloy, or steel CoCrMo, which significantly varies from other metal materials. The obtained results make it possible to indicate the “weak points” of the accepted solution, and thus counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The analysis was conducted with numerical method of ADINA System 8.6. The Finite Elements Method allowed to compute and present stress distribution quickly in all elements of the model.


Author(s):  
Dominique Bigot ◽  
Hocine Kebir ◽  
Jean-Marc Roelandt

Nowadays, the simulation of forming processes is rather well integrated in the industrial numerical codes. However, to take into account the possible modifications of the tool during cycle of working, we develop dedicated numerical software. This one more particularly will allow the identification of the fatigue criteria of the tool. With the view to conceiving the optimal shapes of tool allowing increasing their lifespan while ensuring a quality required of the part thus manufactured. This latter uses coupling with friction finite element method — for modelling the axi-symmetric part — and boundary element method — for modelling the tool. For the validation, we modeled forming process.


Sign in / Sign up

Export Citation Format

Share Document