scholarly journals Structure and Function of the C-terminal Domain of the Polymerase Cofactor of Rabies Virus

2004 ◽  
Vol 343 (4) ◽  
pp. 819-831 ◽  
Author(s):  
Manos Mavrakis ◽  
Andrew A. McCarthy ◽  
Stéphane Roche ◽  
Danielle Blondel ◽  
Rob W.H. Ruigrok
Author(s):  
Mubarak A. Alamri ◽  
Ahmed D. Alafnan ◽  
Obaid Afzal ◽  
Alhumaidi B. Alabbas ◽  
Safar M. Alqahtani

Background: The STE20/SPS1-related proline/alanine-rich kinase (SPAK) is a component of WNKSPAK/OSR1 signaling pathway that plays an essential role in blood pressure regulation. The function of SPAK is mediated by its highly conserved C-terminal domain (CTD) that interacts with RFXV/I motifs of upstream activators, WNK kinases, and downstream substrate, cation-chloride cotransporters. Objective: To determine and validate the three-dimensional structure of the CTD of SPAK and to study and analyze its interaction with the RFXV/I motifs. Methods: A homology model of SPAK CTD was generated and validated through multiple approaches. The model was based on utilizing the OSR1 protein kinase as a template. This model was subjected to 100 ns molecular dynamic (MD) simulation to evaluate its dynamic stability. The final equilibrated model was used to dock the RFQV-peptide derived from WNK4 into the primary pocket that was determined based on the homology sequence between human SPAK and OSR1 CTDs. The mechanism of interaction, conformational rearrangement and dynamic stability of the binding of RFQV-peptide to SPAK CTD were characterized by molecular docking and molecular dynamic simulation. Results: The MD simulation suggested that the binding of RFQV induces a large conformational change due to the distribution of salt bridge within the loop regions. These results may help in understanding the relation between the structure and function of SPAK CTD and to support drug design of potential SPAK kinase inhibitors as antihypertensive agents. Conclusion: This study provides deep insight into SPAK CTD structure and function relationship.


Biochemistry ◽  
1994 ◽  
Vol 33 (37) ◽  
pp. 11307-11314 ◽  
Author(s):  
Subhasis B. Biswas ◽  
Pei-Hua Chen ◽  
Esther E. Biswas

2016 ◽  
Vol 113 (29) ◽  
pp. E4151-E4160 ◽  
Author(s):  
Selom K. Doamekpor ◽  
Joong-Won Lee ◽  
Nathaniel L. Hepowit ◽  
Cheng Wu ◽  
Clement Charenton ◽  
...  

The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1’s substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1’s intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD’s role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.


FEBS Journal ◽  
2010 ◽  
Vol 277 (12) ◽  
pp. 2611-2627 ◽  
Author(s):  
Alexey B. Mantsyzov ◽  
Elena V. Ivanova ◽  
Berry Birdsall ◽  
Elena Z. Alkalaeva ◽  
Polina N. Kryuchkova ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lujing Shi ◽  
Lele Du ◽  
Jingru Wen ◽  
Xiumei Zong ◽  
Wene Zhao ◽  
...  

Arabidopsis cyclophilin38 (CYP38) is a thylakoid lumen protein critial for PSII assembly and maintenance, and its C-terminal region serves as the target binding domain. We hypothesized that four conserved residues (R290, F294, Q372, and F374) in the C-terminal domain are critical for the structure and function of CYP38. In yeast two-hybrid and protein pull-down assays, CYP38s with single-sited mutations (R290A, F294A, Q372A, or F374A) did not interact with the CP47 E-loop as the wild-type CYP38. In contrast, CYP38 with the R290A/F294A/Q372A/F374A quadruple mutation could bind the CP47 E-loop. Gene transformation analysis showed that the quadruple mutation prevented CYP38 to efficiently complement the mutant phenotype of cyp38. The C-terminal domain half protein with the quadruple mutation, like the wild-type one, could interact with the N-terminal domain or the CP47 E-loop in vitro. The cyp38 plants expressing CYP38 with the quadruple mutation showed a similar BN-PAGE profile as cyp38, but distinct from the wild type. The CYP38 protein with the quadruple mutation associated with the thylakoid membrane less efficiently than the wild-type CYP38. We concluded that these four conserved residues are indispensable as changes of all these residues together resulted in a subtle conformational change of CYP38 and reduced its intramolecular N-C interaction and the ability to associate with the thylakoid membrane, thus impairing its function in chloroplast.


FEBS Letters ◽  
2013 ◽  
Vol 587 (20) ◽  
pp. 3341-3347 ◽  
Author(s):  
Egle Virzintiene ◽  
Vamsi K. Moparthi ◽  
Yusra Al-Eryani ◽  
Leonard Shumbe ◽  
Kamil Górecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document