scholarly journals From the connectome to brain function: rabies virus tools for elucidating structure and function of neural circuits

2015 ◽  
Vol 146 (2) ◽  
pp. 98-105 ◽  
Author(s):  
Fumitaka Osakada
2018 ◽  
Vol 49 (4) ◽  
pp. 798-809 ◽  
Author(s):  
Anila M. D'Mello ◽  
John D. E. Gabrieli

Purpose This review summarizes what is known about the structural and functional brain bases of dyslexia. Method We review the current literature on structural and functional brain differences in dyslexia. This includes evidence about differences in gray matter anatomy, white matter connectivity, and functional activations in response to print and language. We also summarize findings concerning brain plasticity in response to interventions. Results We highlight evidence relating brain function and structure to instructional issues such as diagnosis and prognosis. We also highlight evidence about brain differences in early childhood, before formal reading instruction in school, which supports the importance of early identification and intervention. Conclusion Neuroimaging studies of dyslexia reveal how the disorder is related to differences in structure and function in multiple neural circuits.


2021 ◽  
Author(s):  
Elie Fink ◽  
Matthieu Louis

Animals differ in their appearances and behaviors. While many genetic studies have addressed the origins of phenotypic differences between fly species, we are still lacking a quantitative assessment of the variability in the way different fly species behave. We tackled this question in one of the most robust behaviors displayed by Drosophila: chemotaxis. At the larval stage, Drosophila melanogaster navigate odor gradients by combining four sensorimotor routines in a multilayered algorithm: a modulation of the overall locomotor speed and turn rate; a bias in turning during down-gradient motion; a bias in turning toward the gradient; the local curl of trajectories toward the gradient ("weathervaning"). Using high-resolution tracking and behavioral quantification, we characterized the olfactory behavior of eight closely related species of the Drosophila group in response to 19 ecologically-relevant odors. Significant changes are observed in the receptive field of each species, which is consistent with the rapid evolution of the peripheral olfactory system. Our results reveal substantial inter-species variability in the algorithms directing larval chemotaxis. While the basic sensorimotor routines are shared, their parametric arrangements can vary dramatically across species. The present analysis sets the stage for deciphering the evolutionary relationships between the structure and function of neural circuits directing orientation behaviors in Drosophila.


Author(s):  
Francois P. Retief ◽  
Louise Cilliers

In Ancient Egypt mummification was associated with extensive organ resection, but the brain was removed through a hole cut in the ethnocide bone. It was thus not observed as an organ. Greek writers of the 6th and 5th centuries BC originally said the brain was the seat of intelligence, the organ of sensory perception and partially the origin of sperm. The substance pneuma, originating from fresh air, played an essential role in brain function. Hippocrates initially described the brain as a double organ, covered by meninges and responsible for perception. Contemporaries like Plato, Aristotle and Diocles confirmed the findings though the latter two considered the heart to be the centre of intelligence. During the late 4th century BC, with the onset of the Hellenistic era of medicine, dissection of the human body was temporarily allowed at the medical school of Alexandria, and this led to a remarkable advance in the understanding of human anatomy and physiology under Herophilus and Erasistratus. Their excellent descriptions of the structure and function of the brain was only matched and surpassed by Galen in the 2nd century AD.


Author(s):  
John Parrington

This book draws on the latest research on the human brain to show how it differs strikingly from those of other animals in its structure and function at molecular and cellular level. It argues that this ‘shift’, enlarging the brain, giving it greater flexibility and enabling higher functions such as imagination, was driven by tool use, but especially by the development of one remarkable tool—language. The complex social interaction brought by language opened up the possibility of shared conceptual worlds, enriched with rhythmic sounds and images that could be drawn on cave walls. This transformation enabled modern humans to generate an exceptional human consciousness, a sense of self that arises as a product of our brain biology and the social interactions we experience. Linking early work by the Russian psychologist Lev Vygotsky to the findings of modern neuroscience, the book also explores how language, culture, and society mediate brain function, and what this view of the human mind may bring to our understanding and treatment of mental illness.


2020 ◽  
Author(s):  
Adam Haber ◽  
Elad Schneidman

ABSTRACTThe mapping of the wiring diagrams of neural circuits promises to allow us to link structure and function of neural networks. Current approaches to analyzing connectomes rely mainly on graph-theoretical tools, but these may downplay the complex nonlinear dynamics of single neurons and networks, and the way networks respond to their inputs. Here, we measure the functional similarity of simulated networks of neurons, by quantifying the similitude of their spiking patterns in response to the same stimuli. We find that common graph theory metrics convey little information about the similarity of networks’ responses. Instead, we learn a functional metric between networks based on their synaptic differences, and show that it accurately predicts the similarity of novel networks, for a wide range of stimuli. We then show that a sparse set of architectural features - the sum of synaptic inputs that each neuron receives and the sum of each neuron’s synaptic outputs - predicts the functional similarity of networks of up to 100 cells, with high accuracy. We thus suggest new architectural design principles that shape the function of neural networks, which conform with experimental evidence of homeostatic mechanisms.


2004 ◽  
Vol 343 (4) ◽  
pp. 819-831 ◽  
Author(s):  
Manos Mavrakis ◽  
Andrew A. McCarthy ◽  
Stéphane Roche ◽  
Danielle Blondel ◽  
Rob W.H. Ruigrok

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Nadine Randel ◽  
Réza Shahidi ◽  
Csaba Verasztó ◽  
Luis A Bezares-Calderón ◽  
Steffen Schmidt ◽  
...  

Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (<xref ref-type="bibr" rid="bib16">Randel et al., 2014</xref>). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired.


Sign in / Sign up

Export Citation Format

Share Document