Finite element analysis of magnetostrictive energy harvesting concept device utilizing thermodynamic magneto-mechanical model

2019 ◽  
Vol 486 ◽  
pp. 165275 ◽  
Author(s):  
U. Ahmed ◽  
J. Jeronen ◽  
M. Zucca ◽  
S. Palumbo ◽  
P. Rasilo
Author(s):  
Ashok K. Kancharala ◽  
Eric Freeman ◽  
Michael K. Philen

Biologically inspired droplet interface bilayers have found applications in the development of hair cell sensors and other mechanotransduction applications. In this research, the flexoelectric capability of the droplet bilayers under external excitation is explored for energy harvesting. Traditionally, membrane capacitance models are being used for inferring the magnitude of the membrane deflection which do not account for the relation between the applied force or deflection and the deflection of the interfacial membrane and time dependent variations. In this work, the dynamic behavior of the droplets under external excitation has been modeled using nonlinear finite element analysis. A flexoelectric model including mechanical, electrical, and chemical sensitivities has been developed and coupled with the calculated bilayer deformations to predict the mechanotransductive response of the droplets under excitation. Using the developed framework, the possibilities of energy harvesting for different droplet configurations have been investigated and reported.


2019 ◽  
Vol 86 (s1) ◽  
pp. 57-61 ◽  
Author(s):  
Sonia Bradai ◽  
Slim Naifar ◽  
Olfa Kanoun

AbstractHarvesting energy from ambient vibration sources is challenging due to its low characteristic amplitude and frequencies. In this purpose, this work presents a compact hybrid vibration converter based on electromagnetic and magnetoelectric principles working for a frequency bandwidth and under real vibration source properties. The combination of especially these two principles is mainly due to the fact that both converters can use the same changes of the magnetic field for energy harvesting. The converter was investigated using finite element analysis and validated experimentally. Results have shown that a frequency bandwidth up to 12 Hz with a characteristic resonant frequency at 24 Hz and a power density of 0.11mW/cm3 can be reached.


2012 ◽  
Vol 594-597 ◽  
pp. 2655-2658
Author(s):  
Zhen Dong Tan ◽  
Zun Feng Du ◽  
Jian Zhang ◽  
Chao He ◽  
Wei Guo Wu

One of the problems in installing cableway is the estimation of the tension. The mechanical model of coastal shore-to-ship transmission cableway was analyzed with catenary algorithm, compared with the finite element analysis of ANSYS software. The result shows that the tension and its changing amplitude are both gradually decreasing with the increase of the deflection. And, if the deflection is determined, the tension is decreasing with the increase of cableway’s span. These analysis results and conclusions can give the basis to safe installation of the cableway.


Solar Energy ◽  
2015 ◽  
Vol 115 ◽  
pp. 722-732 ◽  
Author(s):  
Manish Sharma ◽  
Aditya Chauhan ◽  
Rahul Vaish ◽  
Vishal Singh Chauhan

2013 ◽  
Vol 397-400 ◽  
pp. 1627-1632
Author(s):  
Liang Liang Wang ◽  
Jin Ju Sun ◽  
Qin Mei ◽  
Hao Cai ◽  
Qing Cai Liu ◽  
...  

In order to meet the testing accuracy of torque in the test of biological bone tissue torsion behavior, a strain gauge torque sensor based on multi-beam structure is designed. The mechanical model of the torque sensor is given and the parameters of the elastic beam structure have been optimized by finite element analysis. Finally the material of the structure and processing technology are determined and static calibration is carried out. Experimental results show that the linearity is 0.9% and the sensitivity is 0.14mV/V in the measurement range from 0 to 0.5Nm with 0.3% resolution.


2014 ◽  
Vol 548-549 ◽  
pp. 449-453 ◽  
Author(s):  
Zhi Qiang Guo ◽  
Ze Lu Xu

For the problem of balance bearing of universal spindle in rolling mill being prone to damage, the paper established mechanical model and finite element model of universal spindle. The paper has analyzed that the shear and bending moment in the middle of the shaft is the largest. The fillet near shoulder of balance bearing of the spindle is dangerous part. In order to reduce principal stress of universal spindle caused by moment, the paper improved balance mode of the spindle. The equilibrant was applied from in one place of shaft to put in two places. After optimizing, equivalent stress of the spindle is slight smaller than before under the same loading condition, which illustrates that the strength of the spindle is appropriately improved. Although the effect is not obvious, this has played a guiding role for the optimization of balance mode of universal spindle.


Sign in / Sign up

Export Citation Format

Share Document