Epithelial Tissues
Recently Published Documents


TOTAL DOCUMENTS

919
(FIVE YEARS 354)

H-INDEX

82
(FIVE YEARS 20)

Development ◽  
2021 ◽  
Author(s):  
Eunice H. Y. Chan ◽  
Yanxiang Zhou ◽  
Birgit L. Aerne ◽  
Maxine V. Holder ◽  
Anne Weston ◽  
...  

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. RASSF8 loss elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, whose depletion phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


2021 ◽  
Author(s):  
Zhixian Bai ◽  
Weidong Cai ◽  
Xinjiang Zhang ◽  
Yuanyuan Zheng ◽  
Taiyu Hui ◽  
...  

Abstract Circular RNAs (CircRNA) is a special type of non-coding RNA molecule with a closed ring structure and is not affected by RNA exonucases. It has stable expression and is not easy to degrade, and exists in most eukaryotes. However, circRNA regulation of cow mastitis has not been widely recognized. Mammary epithelial tissues were collected from healthy Holstein cows (HCN) and mastitis Holstein cows (HCU). RNA sequencing (RNA SEQ) was performed for the differentially expressed circRNAs, and analysis results showed that 19 differentially expressed circRNAs were identified in HCN and HCU, among which 6 circRNAs were up-regulated and 13 circRNAs were down-regulated. We randomly selected 9 circRNAs for Q-PCR verification, and the results showed consistent expression. Three circRNAs: circRNA2860, circRNA5323 and circRNA4027 were confirmed to be significantly differentially expressed circRNAs in cow mastitis. Furthermore, RNA polymerase transcription factor binding and tight junction are most enriched in GO and KEGG pathways, respectively. In addition, the regulatory network of circRNA-miRNA has been inferred from a bioinformatics perspective, which may help to understand the underlying molecular mechanism of circRNAs involved in regulating mastitis in cows.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1440
Author(s):  
Serena Danti ◽  
Shivesh Anand ◽  
Bahareh Azimi ◽  
Mario Milazzo ◽  
Alessandra Fusco ◽  
...  

Chitin nanofibrils (CNs) are an emerging bio-based nanomaterial. Due to nanometric size and high crystallinity, CNs lose the allergenic features of chitin and interestingly acquire anti-inflammatory activity. Here we investigate the possible advantageous use of CNs in tympanic membrane (TM) scaffolds, as they are usually implanted inside highly inflamed tissue environment due to underlying infectious pathologies. In this study, the applications of CNs in TM scaffolds were twofold. A nanocomposite was used, consisting of poly (ethylene oxide terephthalate)/(polybutylene terephthalate) (PEOT/PBT) copolymer loaded with CN/polyethylene glycol (PEG) pre-composite at 50/50 (w/w %) weight ratio, and electrospun into fiber scaffolds, which were coated by CNs from crustacean or fungal sources via electrospray. The degradation behavior of the scaffolds was investigated during 4 months at 37 °C in an otitis-simulating fluid. In vitro tests were performed using cell types to mimic the eardrum, i.e., human mesenchymal stem cells (hMSCs) for connective, and human dermal keratinocytes (HaCaT cells) for epithelial tissues. HMSCs were able to colonize the scaffolds and produce collagen type I. The inflammatory response of HaCaT cells in contact with the CN-coated scaffolds was investigated, revealing a marked downregulation of the pro-inflammatory cytokines. CN-coated PEOT/PBT/(CN/PEG 50:50) scaffolds showed a significant indirect antimicrobial activity.


2021 ◽  
Author(s):  
Joy Lachat ◽  
Alice Pascault ◽  
Delphine Thibaut ◽  
Rémi Le Borgne ◽  
Jean-Marc Verbavatz ◽  
...  

SummaryThe opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Invasion is mainly intracellular, though it causes no apparent damage to host cells. We investigated the invasive lifestyle of C. albicans in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis showed that invasion can result in host membrane breaching at different stages of invasion and cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional “volume” electron microscopy revealed that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo ‘inflations’ linked to host glycogen stores, possibly during nutrient uptake. Thus, C. albicans invade epithelial tissues by either inflicting or avoiding host damage, the latter facilitated by trans-cellular tunnelling.


2021 ◽  
Vol 13 (3) ◽  
pp. 464-468
Author(s):  
Kana Ozasa ◽  
Noboru Noma ◽  
Jumi Nakata ◽  
Yoshiki Imamura

Liver and renal involvement is a rare event in Sjögren’s syndrome. Sjögren’s syndrome is characterized by the progressive immune-mediated destruction of epithelial tissues of the salivary and lacrimal glands. Sensory ganglionitis, accompanied by T-cell invasion, occurs in patients with Sjögren’s syndrome, resulting in sensory neuropathy of the face or limbs. Patients are assessed by quantitative sensory testing. A 76-year-old woman presented with numbness of her left face and was subsequently diagnosed with Sjögren’s syndrome and primary biliary cirrhosis, and was found to have renal failure. Detection of her serum anti-Ro/SSA antibody was strongly positive. Shirmer’s test or a salivary volume in the gum test also showed positive results. Her somatosensory disturbance severity was higher in the trigeminal area than in the forearm, suggesting that the trigeminal nerve is more susceptible than other parts of the nervous system in patients with Sjögren’s syndrome and primary biliary cirrhosis. A simple sensory test could be performed during regular check-ups, as sensory deficits might develop after patients are diagnosed with Sjögren’s syndrome and primary biliary cirrhosis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhang-Hua Chen ◽  
Shu-Mei Yan ◽  
Xi-Xi Chen ◽  
Qi Zhang ◽  
Shang-Xin Liu ◽  
...  

Abstract Background Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs) present unique molecular signatures, but the tumorigenesis of EBVaGCs and the role EBV plays during this process remain poorly understood. Methods We applied whole-exome sequencing, EBV genome sequencing, and whole-genome bisulfite sequencing to multiple samples (n = 123) derived from the same patients (n = 25), which covered saliva samples and different histological stages from morphologically normal epithelial tissues to dysplasia and EBVaGCs. We compared the genomic landscape between EBVaGCs and their precursor lesions and traced the clonal evolution for each patient. We also analyzed genome sequences of EBV from samples of different histological types. Finally, the key molecular events promoting the tumor evolution were demonstrated by MTT, IC50, and colony formation assay in vitro experiments and in vivo xenograft experiments. Results Our analysis revealed increasing mutational burden and EBV load from normal tissues and low-grade dysplasia (LD) to high-grade dysplasia (HD) and EBVaGCs, and oncogenic amplifications occurred late in EBVaGCs. Interestingly, within each patient, EBVaGCs and HDs were monoclonal and harbored single-strain-originated EBV, but saliva or normal tissues/LDs had different EBV strains from that in EBVaGCs. Compared with precursor lesions, tumor cells showed incremental methylation in promotor regions, whereas EBV presented consistent hypermethylation. Dominant alterations targeting the PI3K-Akt and Wnt pathways were found in EBV-infected cells. The combinational inhibition of these two pathways in EBV-positive tumor cells confirmed their synergistic function. Conclusions We portrayed the (epi) genomic evolution process of EBVaGCs, revealed the extensive genomic diversity of EBV between tumors and normal tissue sites, and demonstrated the synergistic activation of the PI3K and Wnt pathways in EBVaGCs, offering a new potential treatment strategy for this disease.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2280
Author(s):  
Ankit Roy Choudhury ◽  
Jörg Großhans ◽  
Deqing Kong

Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.


2021 ◽  
Author(s):  
Morag J. Young ◽  
Colin D. Clyne

Abstract Mineralocorticoid receptors (MRs) are transcriptional regulators that mediate the diverse physiological and pathophysiological actions of corticosteroid hormones across many tissues. In the kidney aldosterone control of sodium/water resorption via DNA-binding actions of the MR is established. MRs also regulate tissues not involved in electrolyte homeostasis such as the heart, adipose tissue, brain, and inflammatory cells where the MRs can respond to both aldosterone and cortisol. The pathology of inappropriate MR activation in non-epithelial tissues are well-described, and steroidal antagonists of the MR have been clinically beneficial in the management of heart failure and blood pressure for decades. However, the role of cortisol-dependent MR activation in the physiological setting is less well defined. Like other steroid hormone receptors, the MR also regulates non-DNA-binding pathways including MAPK pathways and G protein coupled receptors to provide diversity to MR signaling. Whether nonDNA binding pathways are more relevant for MR activation in non-epithelial, versus epithelial, tissues remain unclear. This review will focus on molecular regulation of ligand-dependent MR activation and the physiology and pathophysiology of MR actions in the heart with a focus on the cardiomyocyte and provide a discussion of relevant genomic and non-genomic MR pathways and potential new transcriptional partners for the MR and their relevance for health and disease. Understanding MR actions in the heart will provide new insights into cell-selective mechanisms that underpin the therapeutic benefits of MRAs, and are a critical step towards developing next-generation tissue selective MR modulators with improved safety profiles.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 776
Author(s):  
Rudi Balzano ◽  
Edoardo Stellini ◽  
Carla Mucignat-Caretta

Various signaling molecular pathways are involved in odontogenesis to promote cellular replication and differentiation. Tooth formation is controlled mainly by epithelial–mesenchymal interactions. The aim of this work was to investigate how cellular replication and differentiation ensue during the formation of the murine first molar in postnatal ages until eruption, focusing on morphogenesis, odontoblast differentiation and cellular replication. Wild-type CD1 mice were examined from birth to weaning. Morphogenesis and interaction between developing epithelial and mesenchymal tissues were evaluated in hematoxylin–eosin and Gomori trichome stained sections. Immunohistochemistry for nestin, which mediates the differentiation of odontoblasts, especially their polarization and elongation, showed that this intermediate filament was apparent already at postnatal day P1 in the apical region of odontoblasts and progressed apically from cusp tips, while it was not present in epithelial tissues. The expression of nuclear antigen Ki-67 highlighted dividing cells in both epithelial and mesenchymal tissues at P1, while one week later they were restricted to the cementoenamel junction, guiding root elongation. The link between odontoblast maturation and cellular replication in the different tooth tissues is essential to understand the development of tooth shape and dimension, to outline mechanisms of tooth morphogenesis and possibly eruption.


2021 ◽  
Author(s):  
Victoria G Castiglioni ◽  
Joao J Ramalho ◽  
Jason R Kroll ◽  
Riccardo Stucchi ◽  
Hanna van Beuzekom ◽  
...  

The apical domain of epithelial cells can acquire a diverse array of morphologies and functions, which is critical for the function of epithelial tissues. The Crumbs proteins are evolutionary conserved transmembrane proteins with essential roles in promoting apical domain formation in epithelial cells. The short intracellular tail of Crumbs proteins interacts with a variety of proteins, including the scaffolding protein Pals1 (protein associated with LIN7, Stardust in Drosophila). Pals1 in turn binds to a second scaffolding protein termed PATJ (Pals1-associated tight junction protein), to form the core Crumbs/ Pals1/PATJ Crumbs complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and animal development. Moreover, the presence and functioning of orthologs of Pals1 and PATJ has not been investigated. Here, we identify MAGU-2 and MPZ-1 as the C. elegans orthologs of Pals1 and PATJ, respectively. We show that MAGU-2 interacts with all three Crumbs proteins as well as MPZ-1, and localizes to the apical membrane domain in a Crumbs-dependent fashion. Similar to crumbs mutants, a magu-2 null mutant shows no developmental or epithelial polarity defects. Finally, we show that overexpression of the Crumbs proteins EAT-20 or CRB-3 in the C. elegans intestine can lead to apical membrane expansion. Our results shed light into the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain identity is conserved.


Sign in / Sign up

Export Citation Format

Share Document