Energy Harvesting From Droplet Interface Bilayers

Author(s):  
Ashok K. Kancharala ◽  
Eric Freeman ◽  
Michael K. Philen

Biologically inspired droplet interface bilayers have found applications in the development of hair cell sensors and other mechanotransduction applications. In this research, the flexoelectric capability of the droplet bilayers under external excitation is explored for energy harvesting. Traditionally, membrane capacitance models are being used for inferring the magnitude of the membrane deflection which do not account for the relation between the applied force or deflection and the deflection of the interfacial membrane and time dependent variations. In this work, the dynamic behavior of the droplets under external excitation has been modeled using nonlinear finite element analysis. A flexoelectric model including mechanical, electrical, and chemical sensitivities has been developed and coupled with the calculated bilayer deformations to predict the mechanotransductive response of the droplets under excitation. Using the developed framework, the possibilities of energy harvesting for different droplet configurations have been investigated and reported.

2013 ◽  
Vol 456 ◽  
pp. 55-59
Author(s):  
Ren Bin Zhou ◽  
Xue Bing Liao ◽  
An Qing Ming ◽  
Yong Feng Zhang

Studying the armor-piercing effect of armor-piercing bomb that attacks aluminum target is essential, because the target can be considered the simulation of the actual fight equipment. Based on the hypothesis about building the fraction field, the armor-piercing effect of armor-piercing bomb is analyzed, and the velocity and the intruding depth parameter model of armor-piercing effect are established. Taking a certain armor-piercing bomb as example, the intruding processes of armor-piercing effect are simulated by using the nonlinear finite element analysis program LS-DYNA, while aluminum target simulates the wall of combat equipment in two different conditions. At last, the finite element simulated results are given and analyzed that agree with the experiments.


2013 ◽  
Vol 671-674 ◽  
pp. 1025-1028
Author(s):  
Dong Ku Shin ◽  
Kyungsik Kim

The ultimate compressive strengths of high performance steel (HPS) plate system stiffened longitudinally by closed stiffeners have been investigated by the nonlinear finite element analysis. Both conventional and high performance steels were considered in models following multi-linear strain hardening constitutive relationships. Initial geometric imperfections and residual stresses were also incorporated in the analysis. Numerical results have been compared to compressive strengths from Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205. It has been found that although use of Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205 may lead to highly conservative design strengths when very large column slenderness parameters are encountered


Sign in / Sign up

Export Citation Format

Share Document