scholarly journals Multiple immunoglobulin kappa rearrangements within a single clone unraveled by NGS-based clonality assessment

Author(s):  
A. Meilinde Leenders ◽  
Leonie I. Kroeze ◽  
Jos Rijntjes ◽  
Jeroen Luijks ◽  
Konnie M. Hebeda ◽  
...  
1980 ◽  
Vol 255 (11) ◽  
pp. 5291-5295
Author(s):  
T. Kataoka ◽  
M. Ono ◽  
M. Kawakami ◽  
Y. Ikawa ◽  
M. Aida ◽  
...  

1986 ◽  
Vol 261 (8) ◽  
pp. 3838-3845 ◽  
Author(s):  
M Xu ◽  
M B Barnard ◽  
S M Rose ◽  
P N Cockerill ◽  
S Y Huang ◽  
...  

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Kome Otokunefor ◽  
Blessing O. Famakin ◽  
Dorothy O. Douglas

Abstract Background Fomites have long been known to play a key role in the spread of disease causing agents. Hospital-associated fomites in particular have been linked with transmission of members of the Enterococci sp which are key human pathogens. Few studies have explored the role non-hospital door handles might play as potential sources of these isolates. This study therefore set out to explore this role. Results A total of hundred toilet and office door handles in a tertiary institution in Rivers State, Nigeria, were sampled using the swab and rinse method. The presence and drug susceptibility of Enterococcus was determined using the selective bile esculin agar (BEA) and standard microbiological methods. Growth on BEA was observed in 71% of cases, with more growth (38/50, 76%) observed from toilet door handles. Only 35% of samples produced the characteristic black pigmentation associated with Enterococcus sp. Six different bacterial groups were identified from this subset with Enterococcus sp. making up only 14% (5/35) of the isolates. All (100%) Enterococci were isolated from toilet door handles. Antibiotic susceptibility testing revealed very high levels of resistance (80–100%) against 75% of the test antibiotics. An analysis of the antibiotic resistance pattern of each isolate revealed 11 unique antibiogram patterns. Only 2 of these patterns were associated with the enterococci, with majority (4/5) exhibiting resistance to Augmentin (AUG), Ceftazidime (CAZ), Ceftriaxone (CTR), Cefuroxime (CRX), Cloxacillin (CXC), Erythromycin (ERY), Gentamicin (GEN), Ofloxacin (OFL) (antibiogram of AUG–CAZ–CRX–CTR–CXC–ERY). None of the enterococci, however, was resistant to vancomycin. Conclusion This study reports low level contamination of door handles by enterococci. Identical antibiogram patterns linked with majority of the enterococci could however point at the occurrence of a single clone perhaps indicating single source contamination. Reports of high levels of ampicillin resistance among these isolates are problematic as ampicillin–gentamicin combination is the treatment of choice for nosocomial enterococci pathogens.


1994 ◽  
Vol 39 (1) ◽  
pp. 107-110 ◽  
Author(s):  
W. MAHANA ◽  
F. JACQUEMART ◽  
M. ERMONVAL

1993 ◽  
Vol 13 (10) ◽  
pp. 6393-6402 ◽  
Author(s):  
M A MacInnes ◽  
J A Dickson ◽  
R R Hernandez ◽  
D Learmonth ◽  
G Y Lin ◽  
...  

Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B.


1993 ◽  
Vol 13 (11) ◽  
pp. 6621-6628
Author(s):  
K Satyamoorthy ◽  
K Park ◽  
M L Atchison ◽  
C C Howe

Murine intracisternal A-particle long terminal repeats contain an intracisternal A-particle upstream enhancer (IUE) element that binds to a 65-kDa IUE binding protein (IUEB) present in both undifferentiated F9 embryonal carcinoma cells and differentiated parietal endoderm-like PYS-2 cells. This IUE element confers a CpG methylation-sensitive IUEB binding and enhancer activity. Using gel retardation, methylation interference, CpG methylation sensitivity binding, and cotransfection assays, we have now identified the 65-kDa IUEB as YY1 (also called NF-E1, delta, or UCRBP), a zinc finger protein related to the Krüppel family. YY1 binds to a number of similar but distinct DNA motifs, and cotransfection assays indicate that these motifs have different enhancer potentials in PYS-2 cells. The relative strengths of these elements are as follows: IUE > kappa E3' from the human immunoglobulin kappa light-chain 3' enhancer > upstream conserved region from the Moloney murine leukemia virus promoter. Results of DNA binding assays suggest that the differences in enhancer potentials are due to the different binding affinities of YY1 to the various motifs and the binding of two other transcription factors to the IUE sequence.


1993 ◽  
Vol 13 (10) ◽  
pp. 6393-6402
Author(s):  
M A MacInnes ◽  
J A Dickson ◽  
R R Hernandez ◽  
D Learmonth ◽  
G Y Lin ◽  
...  

Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B.


Sign in / Sign up

Export Citation Format

Share Document