Irwin׳s conjecture: Crack shape adaptability in transversely isotropic solids

2014 ◽  
Vol 68 ◽  
pp. 1-13 ◽  
Author(s):  
Hadrien Laubie ◽  
Franz-Josef Ulm
2006 ◽  
Vol 312 ◽  
pp. 41-46 ◽  
Author(s):  
Bao Lin Wang ◽  
Yiu Wing Mai

This paper solves the penny-shaped crack configuration in transversely isotropic solids with coupled magneto-electro-elastic properties. The crack plane is coincident with the plane of symmetry such that the resulting elastic, electric and magnetic fields are axially symmetric. The mechanical, electrical and magnetical loads are considered separately. Closed-form expressions for the stresses, electric displacements, and magnetic inductions near the crack frontier are given.


1992 ◽  
Vol 27 (1) ◽  
pp. 43-44 ◽  
Author(s):  
P S Theocaris ◽  
T P Philippidis

The basic principle of positive strain energy density of an anisotropic linear or non-linear elastic solid imposes bounds on the values of the stiffness and compliance tensor components. Although rational mathematical structuring of valid intervals for these components is possible and relatively simple, there are mathematical procedures less strictly followed by previous authors, which led to an overestimation of the bounds and misinterpretation of experimental results.


Sign in / Sign up

Export Citation Format

Share Document