reflection point
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 1-81
Author(s):  
Xiaokai Wang ◽  
Zhizhou Huo ◽  
Dawei Liu ◽  
Weiwei Xu ◽  
Wenchao Chen

Common-reflection-point (CRP) gather is one extensive-used prestack seismic data type. However, CRP suffers more noise than poststack seismic dataset. The events in the CRP gather are always flat, and the effective signals from neighboring traces in the CRP gather have similar forms not only in the time domain but also in the time-frequency domain. Therefore, we firstly use the synchrosqueezing wavelet transform (SSWT) to decompose seismic traces to the time-frequency domain, as the SSWT has better time-frequency resolution and reconstruction properties. Then we propose to use the similarity of neighboring traces to smooth and threshold the SSWT coefficients in the time-frequency domain. Finally, we used the modified SSWT coefficients to reconstruct the denoised traces for the CRP gather. Synthetic and field data examples show that our proposed method can effectively attenuate random noise with a better attenuation performance than the commonly-used principal component analysis, FX filter, and the continuous wavelet transform method.


2021 ◽  
Vol 77 (4) ◽  
Author(s):  
Marinda Van Niekerk

This article is written as a reflection on the relevance of being church in a world defined by the coronavirus 2019 (COVID-19). The reflections are done by listening to the stories and experiences of vulnerable men and women who were displaced from their areas of living on the streets into (mostly) temporary shelters. Different organisations, state entities, universities and churches collaborated to serve vulnerable people with dignity. Wonderful and tragic stories played out during this time. Corruption and misuse of power played out alongside passionate and sacrificial work being done by professionals and volunteers alike. This mixed package of care helped the author to reflect on the embodiment of faith and on being church. The value of collaboration is unpacked, and parts of a visual journal are used to bring the stories of people closer. Lessons learned include a growing understanding of the context of homeless people, the contributions they made to the learning experience, and the re-interpretation of critical elements of being church and what can contribute to becoming church in a just and dignified way. The re-interpretation of prayer, discipleship, missional focus, stewardship and leadership, and liturgy is used in re-interpreting being church. The conclusion brings us to the understanding that true community, as expressed in sharing in communion, is critical in becoming a transformative church. Where people from different walks of life connect in an honest way, the transformation of individuals and communities happens and can still happen.Contribution: This article links to the focus and scope of the HTS journal in the way it connects the practical environment of people who are homeless to the experience of and thinking about church. The article reflects on being church and how to interpret faith in a Corona-defined world. From a theological reflection point of view, the understanding of liturgy and faith are re-imagined in the context of the lives of vulnerable people living in shelters. Key insights of the article poses to help the reader understand how dignity, justice and community help us all to re-imagine how to be church. It challenges the institutional church to become more of the community that embraces and welcomes vulnerable people to experience God and church in their spaces.


2021 ◽  
Vol 13 (5) ◽  
pp. 1031
Author(s):  
Lucinda King ◽  
Martin Unwin ◽  
Jonathan Rawlinson ◽  
Raffaella Guida ◽  
Craig Underwood

GNSS Reflectometry (GNSS-R), a method of remote sensing using the reflections from satellite navigation systems, was initially envisaged for ocean wind speed sensing. In recent times there has been significant interest in the use of GNSS-R for sensing land parameters such as soil moisture, which has been identified as an Essential Climate Variable (ECV). Monitoring objectives for ECVs set by the Global Climate Observing System (GCOS) organisation include a reduction in data gaps from spaceborne sources. GNSS-R can be implemented on small, relatively cheap platforms and can enable the launch of constellations, thus reducing such data gaps in these important datasets. However in order to realise operational land sensing with GNSS-R, adaptations are required to existing instrumentation. Spaceborne GNSS-R requires the reflection points to be predicted in advance, and for land sensing this means the effect of topography must be considered. This paper presents an algorithm for on-board prediction of reflection points over the land, allowing generation of DDMs on-board as well as compression and calibration. The algorithm is tested using real satellite data from TechDemoSat-1 in a software receiver with on-board constraints being considered. Three different resolutions of Digital Elevation Model are compared. The algorithm is shown to perform better against the operational requirements of sensing land parameters than existing methods and is ready to proceed to flight testing.


2021 ◽  
Author(s):  
Vitor Hugo Almeida Junior ◽  
Marcelo Tomio Matsuoka ◽  
Felipe Geremia-Nievinski

<p>Global mean sea level is rising at an increasing rate. It is expected to cause more frequent extreme events on coastal sites. The main sea level monitoring systems are conventional tide gauges and satellite altimeters. However, tide gauges are few and satellite altimeters do not work well near the coasts. Ground-based GNSS Reflectometry (GNSS-R) is a promising alternative for coastal sea level measurements. GNSS-R works as a bistatic radar, based on the use of radio waves continuously emitted by GNSS satellites, such as GPS and Galileo, that are reflected on the Earth’s surface. The delay between reflected and direct signals, known as interferometric delay, can be used to retrieve geophysical parameters, such as sea level. One advantage of ground-based GNSS-R is the slant sensing direction, which implies the reflection points can occur at long distances from the receiving antenna. The higher is the receiving antenna and the lower is the satellite elevation angle, the longer will be the distance to the reflection point. The geometrical modeling of interferometric delay, in general, adopts a planar and horizontal model to represent the reflector surface. This assumption may be not valid for far away reflection points due to Earth’s curvature. It must be emphasized that ground-based GNSS-R sensors can be located at high altitudes, such in lighthouses and cliffs, and GNSS satellites are often tracked near grazing incidence and even at negative elevation angles. Eventually, Earth’s curvature would have a significant impact on altimetry retrievals. The osculating spherical model is more adequate to represent the Earth’s surface since its mathematical complexity is in between a plane and an ellipsoid. The present work aims to quantify the effect of Earth’s curvature on ground-based GNSS-R altimetry. Firstly, we modeled the interferometric delay for each plane and sphere and we calculated the differences across the two surface models, for varying satellite elevation and antenna altitude. Then, we developed an altimetry correction in terms of half of the rate of change of the delay correction with respect to the sine of elevation. We simulated observation scenarios with satellite elevation angles from zenith down to the minimum observable elevation on the spherical horizon (negative) and antenna altitudes from 10 m to 500 m. We noted that due to Earth’s curvature, the reflection point is displaced, brought closer in the x-axis and bent downward in the y-axis. The displacement of the reflection point increases the interferometric delay. Near the planar horizon, at zero elevation, the difference increases quickly and so does the altimetry correction. Finally, considering a 1-cm altimetry precision threshold to sea-level measurements, we observed that the altimetry correction for Earth’s curvature is needed at 10°, 20°, and 30° satellite elevation, for an antenna altitude of 60 m, 120 m, and 160 m, respectively.</p>


2021 ◽  
Author(s):  
Shibaji Chakraborty ◽  
Liying Qian ◽  
J. Michael Ruohoniemi ◽  
Joseph Baker ◽  
Joseph McInerney

<p>Trans–ionospheric high frequency (HF) signals experience a strong attenuation following a solar flare, commonly referred to as Short–Wave Fadeout (SWF). Although solar flare-driven HF absorption is a well-known impact of SWF, the occurrence of a frequency shift on radio wave signal traversing the lower ionosphere in the early stages of SWF, also known as "Doppler Flash", is newly reported and not well understood. Some prior investigations have suggested two possible sources that might contribute to the manifestation of Doppler Flash: first,  enhancements of plasma density in the D and lower E regions; second, the lowering of the reflection point in the F region. Observations and modeling evidence regarding the manifestation and evolution of Doppler Flash in the ionosphere are limited. This study seeks to advance our understanding of the initial impacts of solar flare-driven SWF. We use WACCM-X to estimate flare-driven enhanced ionization in D, E, and F-regions and a ray-tracing code (Pharlap) to simulate a 1-hop HF communication through the modified ionosphere. Once the ray traveling path has been identified, the model estimates the Doppler frequency shift along the ray path. Finally, the outputs are validated against observations of SWF made with SuperDARN HF radars. We find that changes in the refractive index due to the F-region's plasma density enhancement is the primary cause of Doppler Flash.</p>


2021 ◽  
pp. 1-29
Author(s):  
Papia Nandi ◽  
Patrick Fulton ◽  
James Dale

As rising ocean temperatures can destabilize gas hydrate, identifying and characterizing large shallow hydrate bodies is increasingly important in order to understand their hazard potential. In the southwestern Gulf of Mexico, reanalysis of 3D seismic reflection data reveals evidence for the presence of six potentially large gas hydrate bodies located at shallow depths below the seafloor. We originally interpreted these bodies as salt, as they share common visual characteristics on seismic data with shallow allochthonous salt bodies, including high-impedance boundaries and homogenous interiors with very little acoustic reflectivity. However, when seismic images are constructed using acoustic velocities associated with salt, the resulting images were of poor quality containing excessive moveout in common reflection point (CRP) offset image gathers. Further investigation reveals that using lower-valued acoustic velocities results in higher quality images with little or no moveout. We believe that these lower acoustic values are representative of gas hydrate and not of salt. Directly underneath these bodies lies a zone of poor reflectivity, which is both typical and expected under hydrate. Observations of gas in a nearby well, other indicators of hydrate in the vicinity, and regional geologic context, all support the interpretation that these large bodies are composed of hydrate. The total equivalent volume of gas within these bodies is estimated to potentially be as large as 1.5 gigatons or 10.5 TCF, considering uncertainty for estimates of porosity and saturation, comparable to the entire proven natural gas reserves of Trinidad and Tobago in 2019.


Sign in / Sign up

Export Citation Format

Share Document