Structure determination of aligned systems by solid-state NMR magic angle spinning methods

2005 ◽  
Vol 176 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Benjamin J. Gross ◽  
Joseph M. Tanski ◽  
Ann E. McDermott
2019 ◽  
Vol 73 (8-9) ◽  
pp. 471-475 ◽  
Author(s):  
Kai Xue ◽  
Salvatore Mamone ◽  
Benita Koch ◽  
Riddhiman Sarkar ◽  
Bernd Reif

2000 ◽  
Vol 53 (12) ◽  
pp. 971 ◽  
Author(s):  
Eric W. Ainscough ◽  
Andrew M. Brodie ◽  
Peter C. Healy ◽  
Joyce M. Waters

The X-ray crystal structure determination of bis[-(phenylcyanamido)bis(triphenylphosphine)copper(I)], [{Cu(PPh3)2(C6H5NCN)}2], (1) is reported. The complex has a centrosymmetric dimeric structure with the phenylcyanamide ligands bridging the copper atoms in a -1,3-fashion. The structure is compared with that of the 4-methylphenylcyanamido complex, [{Cu(PPh3)2(4-MeC6H4NCN)}2] (2), and the differences observed in the Cu–P bond lengths compared with changes in the solid state 31P cross-polarization magic-angle spinning (CPMAS) spectra of the two complexes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Patrick C. A. van der Wel

In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.


2012 ◽  
Vol 714 ◽  
pp. 51-56 ◽  
Author(s):  
Antonio Martínez-Richa ◽  
Regan Silvestri

Solid-state nuclear magnetic resonance (NMR) spectroscopy has emerged as a relatively facile technique for the characterization of multi-component polymer systems. In particular, it has emerged to be a useful technique for probing the molecular structure, conformation and dynamics of polymer chains at interfaces between phases in various types of multi-component polymer systems including nanomaterials. The usefulness of solid-state NMR stems from its ability to non-destructively probe not only the bulk of the polymer, but moreover its ability to selectively probe the interface or interphase. As such, the technique has been extensively exploited in the study of multi-component polymer systems. To achieve13C spectral resolution in the solid-state magic angle spinning (MAS), dipolar decoupling and cross-polarization are applied which enables the study of individual carbon atoms directly with excellent resolution and sensitivity. Some examples of applications of this technique to the study of multiphase aliphatic polyesters are reviewed herein.


2005 ◽  
Vol 127 (37) ◽  
pp. 12965-12974 ◽  
Author(s):  
Ovidiu C. Andronesi ◽  
Stefan Becker ◽  
Karsten Seidel ◽  
Henrike Heise ◽  
Howard S. Young ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document