order parameters
Recently Published Documents


TOTAL DOCUMENTS

1322
(FIVE YEARS 163)

H-INDEX

71
(FIVE YEARS 6)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Nan Feng ◽  
Jian Han ◽  
Chuwen Lan ◽  
Ben Xu ◽  
Ke Bi ◽  
...  

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
M. Prinz-Zwick ◽  
T. Gimpel ◽  
K. Geirhos ◽  
S. Ghara ◽  
C. Steinbrecht ◽  
...  

2022 ◽  
Vol 64 (3) ◽  
pp. 337
Author(s):  
О.А. Космачев ◽  
Е.А. Ярыгина ◽  
Я.Ю. Матюнина ◽  
Ю.А. Фридман

We have investigated the effect of single-ion anisotropy of the "easy plane" type on the phase states of a ferrimagnet with S = 1 and σ=1/2 sublattices and non-Heisenberg (bilinear and biquadratic in spins) exchange interaction for the sublattice with S = 1. It is shown that taking into account both the non-Heisenberg exchange interaction and the single-ion anisotropy of the sublattice with S = 1 leads to the realization of a phase with vector order parameters (ferrimagnetic phase) and a phase characterized by both vector and tensor order parameters (quadrupole-ferrimagnetic). It is shown that taking into account single-ion anisotropy changes the type of phase transition in comparison with an isotropic non-Heisenberg ferrimagnet. A phase diagram is constructed, and the condition for the compensation of the sublattice spins is determined.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Horacio Casini ◽  
Javier M. Magán ◽  
Pedro J. Martínez

Abstract The entropic order parameters measure in a universal geometric way the statistics of non-local operators responsible for generalized symmetries. In this article, we compute entropic order parameters in weakly coupled gauge theories. To perform this computation, the natural route of evaluating expectation values of physical (smeared) non-local operators is prevented by known difficulties in constructing suitable smeared Wilson loops. We circumvent this problem by studying the smeared non-local class operators in the enlarged non-gauge invariant Hilbert space. This provides a generic approach for smeared operators in gauge theories and explicit formulas at weak coupling. In this approach, the Wilson and ’t Hooft loops are labeled by the full weight and co-weight lattices respectively. We study generic Lie groups and discuss couplings with matter fields. Smeared magnetic operators, as opposed to the usual infinitely thin ones, have expectation values that approach one at weak coupling. The corresponding entropic order parameter saturates to its maximum topological value, except for an exponentially small correction, which we compute. On the other hand, smeared ’t Hooft loops and their entropic disorder parameter are exponentially small. We verify that both behaviors match the certainty relation for the relative entropies. In particular, we find upper and lower bounds (that differ by a factor of 2) for the exact coefficient of the linear perimeter law for thin loops at weak coupling. This coefficient is unphysical/non-universal for line operators. We end with some comments regarding the RG flows of entropic parameters through perturbative beta functions.


Author(s):  
Setia Budi Sumandra ◽  
Bhisma Mahendra ◽  
Fahrudin Nugroho ◽  
Yusril Yusuf

Carbon nanotubes (CNTs) have benefits in various fields, they are disadvantageous due to their tendency to form aggregates and poorly controlled alignment of the CNT molecules (characterized by order parameters). These deficiencies can be overcome by dispersing the CNTs in nematic liquid crystal (LC) and placing the mixture under the influence of an electric field. In this study, Doi and Landau–de Gennes free energy density equations are used to analytically confirm that an electric field increases the order parameters of CNTs and LCs in a dispersion mixture. The anchoring strength of the nematic LC is also found to affect the order parameters of the CNTs and LC. Further, increasing the length-to-diameter ratio of the CNTs increases their alignment without affecting the LC alignment. These findings indicate that CNT molecular alignment can be controlled by adjusting the CNT length-to-diameter ratio, anchoring the LCs, and adjusting the electric field strength.


Author(s):  
Bozo Vazic ◽  
Bilen Emek Abali ◽  
Hua Yang ◽  
Pania Newell

AbstractEven though heterogeneous porous materials are widely used in a variety of engineering and scientific fields, such as aerospace, energy-storage technology, and bio-engineering, the relationship between effective material properties of porous materials and their underlying morphology is still not fully understood. To contribute to this knowledge gap, this paper adopts a higher-order asymptotic homogenization method to numerically investigate the effect of complex micropore morphology on the effective mechanical properties of a porous system. Specifically, we use the second-order scheme that is an extension of the first-order computational homogenization framework, where a generalized continuum enables us to introduce length scale into the material constitutive law and capture both pore size and pore distribution. Through several numerical case studies with different combinations of porosity, pore shapes, and distributions, we systematically studied the relationship between the underlying morphology and effective mechanical properties. The results highlight the necessity of higher-order homogenization in understanding the mechanical properties and reveal that higher-order parameters are required to capture the role of realistic pore morphologies on effective mechanical properties. Furthermore, for specific pore shapes, higher-order parameters exhibit dominant influence over the first-order continuum.


2021 ◽  
Vol 8 ◽  
Author(s):  
W. Trent Franks ◽  
Ben P. Tatman ◽  
Jonah Trenouth ◽  
Józef R. Lewandowski

Order parameters are a useful tool for quantifying amplitudes of molecular motions. Here we measure dipolar order parameters by recoupling heteronuclear dipole-dipole couplings under fast spinning. We apply symmetry based recoupling methods to samples spinning under magic angle at 60 kHz by employing a variable flip angle compound inversion pulse. We validate the methods by measuring site-specific 15N-1H order parameters of a microcrystalline protein over a small temperature range and the same protein in a large, precipitated complex with antibody. The measurements of the order parameters in the complex are consistent with the observed protein undergoing overall motion within the assembly.


Sign in / Sign up

Export Citation Format

Share Document