Surface modification of plasma nitriding on Al CoCrFeNi high-entropy alloys

2020 ◽  
Vol 48 ◽  
pp. 140-145 ◽  
Author(s):  
Jinxiong Hou ◽  
Wenwen Song ◽  
Liwei Lan ◽  
Junwei Qiao
2016 ◽  
Vol 5 (3) ◽  
pp. 229-240 ◽  
Author(s):  
M. Nahmany ◽  
Z. Hooper ◽  
A. Stern ◽  
V. Geanta ◽  
I. Voiculescu

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 761
Author(s):  
Takato Karimoto ◽  
Akio Nishimoto

High-entropy alloys (HEAs) were fabricated by powder metallurgy using gas-atomized powder and spark plasma sintering (SPS) followed by surface modification (plasma nitriding) of the sintered sample. Plasma nitriding forms nitride and induces solid-soluting of N; it enables the diffusion of N atoms by removing the passive film formed on the surface of alloys such as stainless steel, Al alloys, and Ti alloys, via the sputtering of cations during glow discharge. Therefore, plasma nitriding has the potential to process HEAs that contain strong oxidizing elements such as Cr, Al, and Ti. In this work, a sintered CoCrFeMnNi HEA was plasma-nitrided and its properties were subsequently evaluated. A uniform microstructure without segregation was obtained in the SPS sample, and its hardness and wear resistance were found to have improved. Analysis of the sample surface after nitriding revealed that an expanded face-centered cubic phase formed on the surface plasma-nitrided at 673 K and that a CrN phase formed on the surface plasma-nitrided at temperatures greater than 723 K. The surface hardness of the plasma-nitrided sample was 1200 HV or greater, and the wear resistance and pitting corrosion resistance were improved compared with those of the untreated sample.


2021 ◽  
Author(s):  
Modupeola Dada ◽  
Patricia Popoola ◽  
Ntombizodwa Mathe ◽  
Samson Adeosun ◽  
Sisa Pityana ◽  
...  

This study reviews the recent technological advancements in manufacturing technique; laser surface modification and material; High Entropy Superalloys. High Entropy Superalloys are current potential alternatives to nickel superalloys for gas turbine applications and these superalloys are presented as the most promising material for gas turbine engine applications.


2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


Sign in / Sign up

Export Citation Format

Share Document