laser surface modification
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 49)

H-INDEX

28
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 106
Author(s):  
Emilia Irzmańska ◽  
Ewa Korzeniewska ◽  
Ryszard Pawlak ◽  
Mariusz Tomczyk ◽  
Aleksandra Smejda-Krzewicka ◽  
...  

The article presents significant results in research on creating superhydrophobic properties of materials which can be used as an interesting material for use in self-cleaning polymer protective gloves and similar applications where the superhydrophobicity plays a significant role. In this work the influence of laser surface modification of MVQ silicone rubber was investigated. The research was conducted using a nanosecond-pulsed laser at 1060 nm wavelength. After a process of laser ablation, the surface condition was examined using a SEM microscope and infrared spectroscopy. During the tests, the contact angle was checked both before and after the laser modification of samples pre-geometrised in the process of their production. The test results presented in the paper indicate that the chemical and physical modifications contribute to the change in the MVQ silicone rubber contact angle. A significant increase (by more than 30°) in the contact angle to 138° was observed. It was confirmed that surface geometrisation is not the only factor contributing to an increase in the contact angle of the analyzed material; other factors include a change in laser texturing parameters, such as mean beam power, pulse duration, scanning speed and pulse repetition frequency.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052083
Author(s):  
L V Belyaev ◽  
A V Zhdanov

Abstract The effect of laser modification of the surface on the value of the coefficient of elasticity, hardness, coefficient of friction and the amount of wear of the counter body when testing products made of a deformable titanium alloy was investigated. It was found that the indicators of hardness and wear resistance of a titanium alloy depend on the modes of laser modification. These dependencies are extreme in nature, they have maxima and minima. The quantitative values of hardness and wear resistance indicators for the specified material before and after laser treatment of its surface in various modes are given.


2021 ◽  
Vol 15 (3) ◽  
pp. 8310-8318
Author(s):  
A. Q. Zaifuddin ◽  
F. Zulhilmi ◽  
M.H. Aiman ◽  
M.M. Quazi ◽  
M. Ishak

Titanium alloys are widely utilized in laser heating applications. However, it has poor optical properties due to low laser energy absorption. Nevertheless, a higher energy absorption can be realized by modifying the surface profile through increasing the surface roughness. In this present work, the laser surface modification (LSM) process was carried out to increase the roughness on surface of Ti6Al4V titanium alloy. Subsequently, the surface characterization and surface roughness were analysed by using the 3D optical microscope. The effect of laser power on the increment of surface roughness was investigated. It was revealed that an increase in laser power during LSM process could increase the surface roughness. The result shows that, the surface roughness of titanium alloy increased 27 times when modified with the highest laser power (27W) compared to the gritted surface. Furthermore, the modified surface by LSM will be heated using laser radiation in order to analyse the effect of surface roughness towards laser heating temperature. Depending on the value of the power during laser heating, the maximum temperature measured could be increased 27% corresponding to a gritted flat reference surface.


Author(s):  
Max-Jonathan Kleefoot ◽  
Sebastian Enderle ◽  
Jens Sandherr ◽  
Marius Bolsinger ◽  
Thomas Maischik ◽  
...  

AbstractThe electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1078
Author(s):  
Ahmed Magdi Elshazli ◽  
Ramadan N. Elshaer ◽  
Abdel Hamid Ahmed Hussein ◽  
Samar Reda Al-Sayed

In the original article [...]


2021 ◽  
Vol 119 ◽  
pp. 111356
Author(s):  
Daicheng Qin ◽  
Chao Wang ◽  
Guoqiang Li ◽  
Minheng Ye ◽  
Yingying Wang ◽  
...  

2021 ◽  
Vol 2036 (1) ◽  
pp. 012038
Author(s):  
E D Ishkinyaev ◽  
E V Khriptovich ◽  
V D Voronov ◽  
V N Petrovskiy ◽  
I N Shiganov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document