scholarly journals Locally isometric embeddings of quotients of the rotation group modulo finite symmetries

2021 ◽  
Vol 185 ◽  
pp. 104764
Author(s):  
Ralf Hielscher ◽  
Laura Lippert
Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.


1983 ◽  
Vol 50 (3) ◽  
pp. 803-892 ◽  
Author(s):  
Eric Berger ◽  
Robert Bryant ◽  
Phillip Griffiths
Keyword(s):  

Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


2021 ◽  
Vol 10 (8) ◽  
pp. 2999-3012
Author(s):  
K. Atchonouglo ◽  
G. de Saxcé ◽  
M. Ban

In this paper, we constructed relationships with the differents 2D elasticity tensor invariants. Indeed, let ${\bf A}$ be a 2D elasticity tensor. Rotation group action leads to a pair of Lax in linear elasticity. This pair of Lax leads to five independent invariants chosen among six. The definite positive criteria are established with the determined invariants. We believe that this approach finds interesting applications, as in the one of elastic material classification or approaches in orbit space description.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


1992 ◽  
Vol 128 ◽  
pp. 65-93 ◽  
Author(s):  
Takeyuki Hida ◽  
Nobuaki Obata ◽  
Kimiaki Saitô

The theory of generalized white noise functionals (white noise calculus) initiated in [2] has been considerably developed in recent years, in particular, toward applications to quantum physics, see e.g. [5], [7] and references cited therein. On the other hand, since H. Yoshizawa [4], [23] discussed an infinite dimensional rotation group to broaden the scope of an investigation of Brownian motion, there have been some attempts to introduce an idea of group theory into the white noise calculus. For example, conformal invariance of Brownian motion with multidimensional parameter space [6], variational calculus of white noise functionals [14], characterization of the Levy Laplacian [17] and so on.


1981 ◽  
Vol 59 (5) ◽  
pp. 688-692 ◽  
Author(s):  
Nigel A. Sharp

The use of isometric embeddings of curved geometries reveals their intrinsic structure in a way that is readily appreciated. This is done for 3 two-surfaces sliced from the Kerr metric which describes a rotating black hole: the equatorial plane, the event horizon, and the ergosurface.


Sign in / Sign up

Export Citation Format

Share Document