rotating black hole
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 27)

H-INDEX

46
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lam Hui ◽  
Alessandro Podo ◽  
Luca Santoni ◽  
Enrico Trincherini

Abstract We develop the effective theory for perturbations around black holes with scalar hair, in two directions. First, we show that the scalar-Gauss-Bonnet theory, often used as an example exhibiting scalar black hole hair, can be deformed by galileon operators leading to order unity changes to its predictions. The effective theory for perturbations thus provides an efficient framework for describing and constraining broad classes of scalar-tensor theories, of which the addition of galileon operators is an example. Second, we extend the effective theory to perturbations around an axisymmetric, slowly rotating black hole, at linear order in the black hole spin. We also discuss the inclusion of parity-breaking operators in the effective theory.



Author(s):  
Farruh Atamurotov ◽  
Uma Papnoi ◽  
Kimet Jusufi

Abstract We analysed the shadow cast by charged rotating black hole (BH) in presence of perfect fluid dark matter (PFDM). We studied the null geodesic equations and obtained the shadow of the charged rotating BH to see the effects of PFDM parameter $\gamma$, charge $Q$ and rotation parameter $a$, and it is noticed that the size as well as the shape of BH shadow is affected due to PFDM parameter, charge and rotation parameter. Thus, it is seen that the presence of dark matter around a BH affects its spacetime. We also investigated the influence of all the parameters (PFDM parameter $\gamma$, BHs charge $Q$ and rotational parameter $a$) on effective potential, energy emission by graphical representation, and compare all the results with the non rotating case in usual general relativity. To this end, we have also explored the effect of PFDM on the deflection angle and the size of Einstein rings.



2021 ◽  
Vol 2021 (11) ◽  
pp. 007
Author(s):  
G.G.L. Nashed ◽  
Shin'ichi Nojiri


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Xin Jiang ◽  
Peng Wang ◽  
Haitang Yang ◽  
Houwen Wu

AbstractThe measurements of quasi-periodic oscillations (QPOs) provide a quite powerful tool to test the nature of astrophysical black hole candidates in the strong gravitational field regime. In this paper, we use QPOs within the relativistic precession model to test a recently proposed family of rotating black hole mimickers, which reduce to the Kerr metric in a limiting case, and can represent traversable wormholes or regular black holes with one or two horizons, depending on the values of the parameters. In particular, assuming that the compact object of GRO J1655-40 is described by a rotating black hole mimicker, we perform a $$\chi $$ χ -square analysis to fit the parameters of the mimicker with two sets of observed QPO frequencies from GRO J1655-40. Our results indicate that although the metric around the compact object of GRO J1655-40 is consistent with the Kerr metric, a regular black hole with one horizon is favored by the observation data of GRO J1655-40.



2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Finnian Gray ◽  
Tsuyoshi Houri ◽  
David Kubizňák ◽  
Yukinori Yasui


2021 ◽  
pp. 2100064
Author(s):  
A. J. Nurmagambetov ◽  
I. Y. Park


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander Gußmann

Abstract A black hole image contains a bright ring of photons that have closely circled the black hole on their way from the source to the detector. Here, we study the photon ring of a rotating black hole which is pierced by a global hyper-light axion-type cosmic string. We show that the coupling 𝜙F$$ \overset{\sim }{F} $$ F ~ between the axion 𝜙 and the photon can give rise to a unique polarimetric structure of the photon ring. The structure emerges due to an Aharonov-Bohm type effect that leads to a change of the polarization directions of linear polarized photons when they circle the black hole. For several parameter choices, we determine concrete polarization patterns in the ring. Measuring these patterns can provide us with a way of determining the value of the coefficient of the mixed anomaly between electromagnetism and the symmetry that gave rise to the cosmic string. Finally, we briefly review a possible formation mechanism of black holes that are pierced by cosmic strings and discuss under which conditions we can expect such objects to be present as supermassive black holes in the center of galaxies.



2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Markus B. Fröb

AbstractWe show that the Kerr–Schild ansatz can be extended from the metric to the tetrad, and then to teleparallel gravity where curvature vanishes but torsion does not. We derive the equations of motion for the Kerr–Schild null vector, and describe the solution for a rotating black hole in this framework. It is shown that the solution depends on the chosen tetrad in a non-trivial way if the spin connection is fixed to be the one of the flat background spacetime. We show furthermore that any Kerr–Schild solution with a flat background is also a solution of $$f({\mathcal {T}})$$ f ( T ) gravity.



2021 ◽  
pp. 168567
Author(s):  
E. Contreras ◽  
Ángel Rincón ◽  
Grigoris Panotopoulos ◽  
Pedro Bargueño


Sign in / Sign up

Export Citation Format

Share Document