Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements

2006 ◽  
Vol 153 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Asi Cohen ◽  
Noam Zilberberg
2000 ◽  
Vol 115 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Irina I. Grichtchenko ◽  
Michael F. Romero ◽  
Walter F. Boron

We studied the extracellular [HCOabstract 3 −] dependence of two renal clones of the electrogenic Na/HCO3 cotransporter (NBC) heterologously expressed in Xenopus oocytes. We used microelectrodes to measure the change in membrane potential (ΔVm) elicited by the NBC cloned from the kidney of the salamander Ambystoma tigrinum (akNBC) and by the NBC cloned from the kidney of rat (rkNBC). We used a two-electrode voltage clamp to measure the change in current (ΔI) elicited by rkNBC. Briefly exposing an NBC-expressing oocyte to HCOabstract 3 −/CO2 (0.33–99 mM HCOabstract 3−, pHo 7.5) elicited an immediate, DIDS (4,4-diisothiocyanatostilbene-2,2-disulfonic acid)-sensitive and Na+-dependent hyperpolarization (or outward current). In ΔVm experiments, the apparent Km for HCOabstract 3− of akNBC (10.6 mM) and rkNBC (10.8 mM) were similar. However, under voltage-clamp conditions, the apparent Km for HCOabstract 3− of rkNBC was less (6.5 mM). Because it has been reported that SOabstract 3=/HSO abstract 3− stimulates Na/HCO3 cotransport in renal membrane vesicles (a result that supports the existence of a COabstract 3= binding site with which SOabstract 3= interacts), we examined the effect of SOabstract 3=/HSO abstract 3− on rkNBC. In voltage-clamp studies, we found that neither 33 mM SOabstract 4= nor 33 mM SOabstract 3 =/HSOabstract 3− substantially affects the apparent Km for HCO abstract 3−. We also used microelectrodes to monitor intracellular pH (pHi) while exposing rkNBC-expressing oocytes to 3.3 mM HCOabstract 3 −/0.5% CO2. We found that SO abstract 3=/HSOabstract 3 − did not significantly affect the DIDS-sensitive component of the pHi recovery from the initial CO2 -induced acidification. We also monitored the rkNBC current while simultaneously varying [CO2]o, pHo, and [COabstract 3=]o at a fixed [HCOabstract 3−]o of 33 mM. A Michaelis-Menten equation poorly fitted the data expressed as current versus [COabstract 3=]o . However, a pH titration curve nicely fitted the data expressed as current versus pHo. Thus, rkNBC expressed in Xenopus oocytes does not appear to interact with SOabstract 3 =, HSOabstract 3−, or COabstract 3=.


2007 ◽  
Vol 292 (5) ◽  
pp. C1787-C1798 ◽  
Author(s):  
Jing Lu ◽  
Walter F. Boron

Others have shown that H2DIDS reversibly and covalently binds to the first lysine (K) in the SKLIK motif at the extracellular end of transmembrane segment 5 of the Cl-HCO3 exchanger AE1. Here we mutated K558, K559, and/or K562 in the homologous KKMIK motif of human NBCe1-A. We expressed constructs in Xenopus oocytes, and used a two-electrode voltage clamp to test the sensitivity of the NBC current (−160 to +20 mV) to DIDS. A 30-s DIDS exposure decreased the current at 0 mV, and a subsequent albumin wash returned the current to the initial value (less any irreversible DIDS inhibition), permitting the determination of a complete dose-response curve on a single oocyte. For all constructs, the reversible DIDS inhibition of the NBC current decreased at more negative voltages. The apparent inhibitory constant for reversible DIDS binding increased in the sequence RRMIR < KKMIK ( wt, ∼40 μM) < NKMIK ≅ NKMIN ≅ KKMIN < KNMIN ≅ KNMIK < NNMIK < NNMIN (∼400 μM) < DDMID < EEMIE (∼800 μM). Thus the second K is the most important for reversible DIDS blockade. Nevertheless, these mutations had relatively little effect on slope conductance in the absence of DIDS. For KKMIK, RRMIR, NKMIK, KKMIN, KNMIK, and NNMIN, the rates of irreversible inhibition by DIDS roughly parallel the apparent affinities for reversible DIDS binding. The rate was extremely low for DDMID. The fitted maximal inhibitions were 80–91% for the first five constructs, and 66% for NNMIN. Thus DIDS probably reversibly binds before irreversibly reacting with NBCe1-A. Finally, tenidap blocks not only KKMIK, but also NNMIN and EEMIE.


1998 ◽  
Vol 81 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
Harald Schmalwasser ◽  
Andreas Neef ◽  
Alison A Elliott ◽  
Stefan H Heinemann

2021 ◽  
pp. 247255522110041
Author(s):  
Raffaella Cinquetti ◽  
Francesca Guia Imperiali ◽  
Salvatore Bozzaro ◽  
Daniele Zanella ◽  
Francesca Vacca ◽  
...  

Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities. Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein. This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48–72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals. The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.


2009 ◽  
Vol 297 (6) ◽  
pp. R1647-R1659 ◽  
Author(s):  
Akira Kato ◽  
Min-Hwang Chang ◽  
Yukihiro Kurita ◽  
Tsutomu Nakada ◽  
Maho Ogoshi ◽  
...  

Sulfate (SO42−) is the second most abundant anion in seawater (SW), and excretion of excess SO42− from ingested SW is essential for marine fish to survive. Marine teleosts excrete SO42− via the urine produced in the kidney. The SO42− transporter that secretes and concentrates SO42− in the urine has not previously been identified. Here, we have identified and characterized candidates for the long-sought transporters. Using sequences from the fugu database, we have cloned cDNA fragments of all transporters belonging to the Slc13 and Slc26 families from mefugu ( Takifugu obscurus ). We compared Slc13 and Slc26 mRNA expression in the kidney between freshwater (FW) and SW mefugu. Among 14 clones examined, the expression of a Slc26a6 paralog (mfSlc26a6A) was the most upregulated (30-fold) in the kidney of SW mefugu. Electrophysiological analyses of Xenopus oocytes expressing mfSlc26a6A, mfSlc26a6B, and mouse Slc26a6 (mSlc26a6) demonstrated that all transporters mediate electrogenic Cl−/SO42−, Cl−/oxalate2−, and Cl−/ nHCO3− exchanges and electroneutral Cl−/formate− exchange. Two-electrode voltage-clamp experiments demonstrated that the SO42−-elicited currents of mfSlc26a6A is quite large (∼35 μA at +60 mV) and 50- to 200-fold higher than those of mfSlc26a6B and mSlc26a6. Conversely, the currents elicited by oxalate and HCO3− are almost identical among mfSlc26a6A, mfSlc26a6B, and mSlc26a6. Kinetic analysis revealed that mfSlc26a6A has the highest SO42− affinity as well as capacity. Immunohistochemical analyses demonstrated that mfSlc26a6A localizes to the apical (brush-border) region of the proximal tubules. Together, these findings suggest that mfSlc26a6A is the most likely candidate for the major apical SO42− transporter that mediates SO42− secretion in the kidney of marine teleosts.


Sign in / Sign up

Export Citation Format

Share Document