Characterization of Transport Activity of SLC11 Transporters in Xenopus laevis Oocytes by Fluorophore Quenching

2021 ◽  
pp. 247255522110041
Author(s):  
Raffaella Cinquetti ◽  
Francesca Guia Imperiali ◽  
Salvatore Bozzaro ◽  
Daniele Zanella ◽  
Francesca Vacca ◽  
...  

Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities. Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein. This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48–72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals. The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.

2021 ◽  
Vol 14 (7) ◽  
pp. 698
Author(s):  
Tina V. A. Hansen ◽  
Richard K. Grencis ◽  
Mohamed Issouf ◽  
Cédric Neveu ◽  
Claude L. Charvet

The human whipworm, Trichuris trichiura, is estimated to infect 289.6 million people globally. Control of human trichuriasis is a particular challenge, as most anthelmintics have a limited single-dose efficacy, with the striking exception of the narrow-spectrum anthelmintic, oxantel. We recently identified a novel ACR-16-like subunit from the pig whipworm, T. suis which gave rise to a functional acetylcholine receptor (nAChR) preferentially activated by oxantel. However, there is no ion channel described in the mouse model parasite T. muris so far. Here, we have identified the ACR-16-like and ACR-19 subunits from T. muris, and performed the functional characterization of the receptors in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. We found that the ACR-16-like subunit from T. muris formed a homomeric receptor gated by acetylcholine whereas the ACR-19 failed to create a functional channel. The subsequent pharmacological analysis of the Tmu-ACR-16-like receptor revealed that acetylcholine and oxantel were equally potent. The Tmu-ACR-16-like was more responsive to the toxic agonist epibatidine, but insensitive to pyrantel, in contrast to the Tsu-ACR-16-like receptor. These findings confirm that the ACR-16-like nAChR from Trichuris spp. is a preferential drug target for oxantel, and highlights the pharmacological difference between Trichuris species.


1998 ◽  
Vol 333 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Stefan BRÖER ◽  
Hans-Peter SCHNEIDER ◽  
Angelika BRÖER ◽  
Basim RAHMAN ◽  
Bernd HAMPRECHT ◽  
...  

Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)-expressing Xenopus laevis oocytes by using pH-sensitive microelectrodes and [14C]lactate. Superfusion with lactate resulted in intracellular acidification of MCT1-expressing oocytes, but not in non-injected control oocytes. The basic kinetic properties of lactate transport in MCT1-expressing oocytes were determined by analysing the rates of intracellular pH changes under different conditions. The results were in agreement with the known properties of the transporter, with respect to both the dependence on the lactate concentration and the external pH value. Besides lactate, MCT1 mediated the reversible transport of a wide variety of monocarboxylic acids including pyruvate, d,l-3-hydroxybutyrate, acetoacetate, α-oxoisohexanoate and α-oxoisovalerate, but not of dicarboxylic and tricarboxylic acids. The inhibitor α-cyano-4-hydroxycinnamate bound strongly to the transporter without being translocated, but could be displaced by the addition of lactate. In addition to changes in the intracellular pH, lactate transport also induced deviations from the resting membrane potential.


1997 ◽  
Vol 86 (6) ◽  
pp. 753-755 ◽  
Author(s):  
Joanne K. Chun ◽  
Micheline Piquette-Miller ◽  
Lei Zhang ◽  
Kathleen M. Giacomini

2007 ◽  
Vol 292 (3) ◽  
pp. C1132-C1136 ◽  
Author(s):  
Alexandre Leduc-Nadeau ◽  
Karim Lahjouji ◽  
Pierre Bissonnette ◽  
Jean-Yves Lapointe ◽  
Daniel G. Bichet

Over the past two decades, Xenopus laevis oocytes have been widely used as an expression system to investigate both physiological and pathological properties of membrane proteins such as channels and transporters. Past studies have clearly shown the key implications of mistargeting in relation to the pathogenesis of these proteins. To unambiguously determine the plasma membrane targeting of a protein, a thorough purification technique becomes essential. Unfortunately, available techniques are either too cumbersome, technically demanding, or require large amounts of material, all of which are not adequate when using oocytes individually injected with cRNA or DNA. In this article, we present a new technique that permits excellent purification of plasma membranes from X. laevis oocytes. This technique is fast, does not require particular skills such as peeling of vitelline membrane, and permits purification of multiple samples from as few as 10 and up to >100 oocytes. The procedure combines partial digestion of the vitelline membrane, polymerization of the plasma membrane, and low-speed centrifugations. We have validated this technique essentially with Western blot assays on three plasma membrane proteins [aquaporin (AQP)2, Na+-glucose cotransporter (SGLT)1, and transient receptor potential vanilloid (TRPV)5], using both wild-type and mistargeted forms of the proteins. Purified plasma membrane fractions were easily collected, and samples were found to be adequate for Western blot identification.


2013 ◽  
Vol 304 (7) ◽  
pp. C604-C613 ◽  
Author(s):  
Jonathan M. Berman ◽  
Mouhamed S. Awayda

Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp.


Author(s):  
Tina V. A. Hansen ◽  
Richard K. Grencis ◽  
Mohamed Issouf ◽  
Cédric Neveu ◽  
Claude L. Charvet

The human whipworm, Trichuris trichiura, is estimated to infect 289.6 million people globally. Control of human trichuriasis is a particular challenge, as most anthelmintics have a limited single-dose efficacy, with the striking exception of the narrow-spectrum anthelmintic, oxantel. We recently identified a novel ACR-16-like subunit from the pig whipworm, T. suis which gave rise to a functional acetylcholine receptor (nAChR) preferentially activated by oxantel. However, there is no ion channel described in the mouse model parasite T. muris so far. Here, we have identified the ACR-16-like and ACR-19 subunits from T. muris, and performed the functional characterization of the receptors in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. We found that the ACR-16-like subunit from T. muris formed a homomeric receptor gated by acetylcholine whereas the ACR-19 failed to create a functional channel. The subsequent pharmacological analysis of the Tmu-ACR-16-like receptor revealed that acetylcholine and oxantel were equally potent. The Tmu-ACR-16-like was more responsive to the toxic agonist epibatidine, but insensitive to pyrantel, in contrast to the Tsu-ACR-16-like receptor. These findings confirm that the ACR-16-like nAChR from Trichuris spp. is a preferential drug-target for oxantel, and highlights the pharmacological difference between Trichuris species.


Sign in / Sign up

Export Citation Format

Share Document