Wellbore stability analysis for horizontal wells in shale formations

2016 ◽  
Vol 31 ◽  
pp. 1-8 ◽  
Author(s):  
Xiangjun Liu ◽  
Wei Zeng ◽  
Lixi Liang ◽  
Meng Lei
2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Xiangchao Shi ◽  
Xiao Zhuo ◽  
Yue Xiao ◽  
Boyun Guo ◽  
Cheng Zhu ◽  
...  

Abstract Wellbore instability is a critical issue restricting efficient well drilling and successful development of oil and gas field. Most instability problems originate from shale formations because of their distinct laminated structures that cause significant anisotropy and moderate to high clay contents that are prone to shrinkage and swelling. To account for these influences on the mechanical responses of shales, this study aims to identify an appropriate strength criterion for stability analyses. Two anisotropic criteria including single plane of weakness and the modified Hoek–Brown criteria were compared to evaluate their suitability in characterizing the anisotropic strength of layered rocks including shale, schist, and slate under different confining pressures. Comparative case studies indicated that the single plane of weakness criterion overestimates the strength of layered rocks at some orientation angles. The modified Hoek–Brown criterion can fit well with the experimental data of layered rocks. Moreover, wellbore stability analysis models for shale gas wells were built, respectively, for each criterion and applied to in situ scenarios. The single plane of weakness and modified Hoek–Brown criteria provide similar results of collapse pressure, and the shale failure is mainly determined by the bedding plane. This further validates that the modified Hoek–Brown criterion is a good choice for wellbore stability analysis in shale formations with bedding planes. This study shows the potential of using the modified Hoek–Brown criterion to enhance the safety and efficiency of well drilling and operation in shale formations.


2021 ◽  
Author(s):  
Jingyou Xue ◽  
Kenji Furui

<p>Wellbore instability is one of the most serious drilling problems increasing well cost in well construction processes. It is widely known that many wellbore instability problems are reported in shale formations where water sensitive clay mineral exist. The problems become further complicated when the shale exhibits variation in strength properties along and across bedding planes. In this study, a coupled thermal-hydro-mechanical-chemical (THMC) model was developed for time-dependent anisotropic wellbore stability analysis considering chemical interactions between swelling shale and drilling fluids, thermal effects, and poro-elastoplastic stress-strain behaviors.</p><p>The THMC simulator developed in this work assumes that the shale formation behaves as an ion exchange membrane where swelling depends on chemical potential of drilling fluids invading from the wellbore to the pore spaces. The time-dependent chemical potential changes of water within the shale are evaluated using an analytical diffusion equation resulting in the evolution of swelling strain around the wellbore. On the other hand, the thermal and pressure diffusion equations are evaluated numerically by finite differences. The stress changes associated with thermal, hydro, and chemical effects are coupled to the 3D poroelastoplastic finite element model. The effects of bedding planes are also taken into account in the FEM model through the crack tensor method in which the normal and tangential stiffnesses of the bedding planes have stress dependency. The failure of the formation rock is judged based on the critical plastic strain limit.</p><p>The numerical analysis results indicate that the rock strength anisotropy induced by the existence of bedding planes is the most important factor influencing the stability of the wellbore among various THMC process parameters investigated in this work. The numerical results also reveal that an established theory to orient the wellbore in the direction of the minimum principal stress is not always a favorable option when the effect of the anisotropy of in-situ stresses and the distribution angle of bedding planes cancel out each other. Depending on both the distribution angle of bedding plane and ratio of the vertical to the horizontal stress, the trend of minimum mud pressure showed a great variation as predicted by the yield and failure criterion implemented in the model. Furthermore, the analysis results reveal that the distribution and evolution of plastic strains caused by the THMC processes have the time dependency, which can be controlled by the temperature and salinity of the drilling fluids.</p><p>The numerical wellbore stability analysis model considering shale swelling and bedding plane effects provides an effective tool for designing optimum well trajectories and determining safe mud weight windows for drilling complex shale formations. The time-dependent margins of safe mud weight window of drilling can be fine-tuned when the interaction among various parameters is fully considered as the THMC processes.</p>


Author(s):  
Wanchun Zhao ◽  
Yu Liu ◽  
Tingting Wang ◽  
P. G. Ranjith ◽  
Yufeng Zhang

2001 ◽  
Author(s):  
M. Yu ◽  
G. Chen ◽  
M.E. Chenevert ◽  
M.M. Sharma

Author(s):  
Matthew Blyth ◽  
◽  
Naoki Sakiyama ◽  
Hiroshi Hori ◽  
Hiroaki Yamamoto ◽  
...  

A new logging-while-drilling (LWD) acoustic tool has been developed with novel ultrasonic pitch-catch and pulse-echo technologies. The tool enables both high-resolution slowness and reflectivity images, which cannot be addressed with conventional acoustic logging. Measuring formation elastic-wave properties in complex, finely layered formations is routinely attempted with sonic tools that measure slowness over a receiver array with a length of 2 ft or more depending upon the tool design. These apertures lead to processing results with similar vertical resolutions, obscuring the true slowness of any layering occurring at a finer scale. If any of these layers present significantly different elastic-wave properties than the surrounding rock, then they can play a major role in both wellbore stability and hydraulic fracturing but can be absent from geomechanical models built on routine sonic measurements. Conventional sonic tools operate in the 0.1- to 20-kHz frequency range and can deliver slowness information with approximately 1 ft or more depth of investigation. This is sufficient to investigate the far-field slowness values but makes it very challenging to evaluate the near-wellbore region where tectonic stress redistribution causes pronounced azimuthal slowness variation. This stress-induced slowness variation is important because it is also a key driver of wellbore geomechanics. Moreover, in the presence of highly laminated formations, there can be a significant azimuthal variation of slowness due to layering that is often beyond the resolution of conventional sonic tools due to their operating frequency. Finally, in horizontal wells, multiple layer slownesses are being measured simultaneously because of the depth of investigation of conventional sonic tools. This can cause significant interpretational challenges. To address these challenges, an entirely new design approach was needed. The novel pitch-catch technology operates over a wide frequency range centered at 250 kHz and contains an array of receivers having a 2-in. receiver aperture. The use of dual ultrasonic technology allows the measurement of high-resolution slowness data azimuthally as well as reflectivity and caliper images. The new LWD tool was run in both vertical and horizontal wells and directly compared with both wireline sonic and imaging tools. The inch-scale slownesses obtained show characteristic features that clearly correlate to the formation lithology and structure indicated by the images. These features are completely absent from the conventional sonic data due to its comparatively lower vertical resolution. Slowness images from the tool reflect the formation elastic-wave properties at a fine scale and show dips and lithological variations that are complementary to the data from the pulse-echo images. The physics of the measurement are discussed, along with its ability to measure near-wellbore slowness, elastic-wave properties, and stress variations. Additionally, the effect of the stress-induced, near-wellbore features seen in the slowness images and the pulse-echo images is discussed with the wireline dipole shear anisotropy processing.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1178-1188 ◽  
Author(s):  
Amin Mehrabian ◽  
Younane Abousleiman

Summary Wellbore tensile failure is a known consequence of drilling with excessive mud weight, which can cause costly events of lost circulation. Despite the successful use of lost-circulation materials (LCMs) in treating lost-circulation events of the drilling operations, extensions of wellbore-stability models to the case of a fractured and LCM-treated wellbore have not been published. This paper presents an extension of the conventional wellbore-stability analysis to such circumstances. The proposed wellbore geomechanics solution revisits the criteria for breakdown of a fractured wellbore to identify an extended margin for the equivalent circulation density (ECD) of drilling. An analytical approach is taken to solve for the related multiscale and nonlinear problem of the three-way mechanical interaction between the wellbore, fracture wings, and LCM aggregate. The criteria for unstable propagation of existing near-wellbore fractures, together with those for initiating secondary fractures from the wellbore, are obtained. Results suggest that, in many circumstances, the occurrence of both incidents can be prevented, if the LCM blend is properly engineered to recover certain depositional and mechanical properties at downhole conditions. Under such optimal design conditions, the maximum ECD to which the breakdown limit of a permeable formation could be enhanced is predicted.


Sign in / Sign up

Export Citation Format

Share Document