Coring Samples And Obtaining Geomechanical Properties For Wellbore Stability Analysis In Deepwater Brazilian Horizontal Wells

Author(s):  
Andrea Nicolino de Sa ◽  
Antonio Claudio Soares
Author(s):  
Matthew Blyth ◽  
◽  
Naoki Sakiyama ◽  
Hiroshi Hori ◽  
Hiroaki Yamamoto ◽  
...  

A new logging-while-drilling (LWD) acoustic tool has been developed with novel ultrasonic pitch-catch and pulse-echo technologies. The tool enables both high-resolution slowness and reflectivity images, which cannot be addressed with conventional acoustic logging. Measuring formation elastic-wave properties in complex, finely layered formations is routinely attempted with sonic tools that measure slowness over a receiver array with a length of 2 ft or more depending upon the tool design. These apertures lead to processing results with similar vertical resolutions, obscuring the true slowness of any layering occurring at a finer scale. If any of these layers present significantly different elastic-wave properties than the surrounding rock, then they can play a major role in both wellbore stability and hydraulic fracturing but can be absent from geomechanical models built on routine sonic measurements. Conventional sonic tools operate in the 0.1- to 20-kHz frequency range and can deliver slowness information with approximately 1 ft or more depth of investigation. This is sufficient to investigate the far-field slowness values but makes it very challenging to evaluate the near-wellbore region where tectonic stress redistribution causes pronounced azimuthal slowness variation. This stress-induced slowness variation is important because it is also a key driver of wellbore geomechanics. Moreover, in the presence of highly laminated formations, there can be a significant azimuthal variation of slowness due to layering that is often beyond the resolution of conventional sonic tools due to their operating frequency. Finally, in horizontal wells, multiple layer slownesses are being measured simultaneously because of the depth of investigation of conventional sonic tools. This can cause significant interpretational challenges. To address these challenges, an entirely new design approach was needed. The novel pitch-catch technology operates over a wide frequency range centered at 250 kHz and contains an array of receivers having a 2-in. receiver aperture. The use of dual ultrasonic technology allows the measurement of high-resolution slowness data azimuthally as well as reflectivity and caliper images. The new LWD tool was run in both vertical and horizontal wells and directly compared with both wireline sonic and imaging tools. The inch-scale slownesses obtained show characteristic features that clearly correlate to the formation lithology and structure indicated by the images. These features are completely absent from the conventional sonic data due to its comparatively lower vertical resolution. Slowness images from the tool reflect the formation elastic-wave properties at a fine scale and show dips and lithological variations that are complementary to the data from the pulse-echo images. The physics of the measurement are discussed, along with its ability to measure near-wellbore slowness, elastic-wave properties, and stress variations. Additionally, the effect of the stress-induced, near-wellbore features seen in the slowness images and the pulse-echo images is discussed with the wireline dipole shear anisotropy processing.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1178-1188 ◽  
Author(s):  
Amin Mehrabian ◽  
Younane Abousleiman

Summary Wellbore tensile failure is a known consequence of drilling with excessive mud weight, which can cause costly events of lost circulation. Despite the successful use of lost-circulation materials (LCMs) in treating lost-circulation events of the drilling operations, extensions of wellbore-stability models to the case of a fractured and LCM-treated wellbore have not been published. This paper presents an extension of the conventional wellbore-stability analysis to such circumstances. The proposed wellbore geomechanics solution revisits the criteria for breakdown of a fractured wellbore to identify an extended margin for the equivalent circulation density (ECD) of drilling. An analytical approach is taken to solve for the related multiscale and nonlinear problem of the three-way mechanical interaction between the wellbore, fracture wings, and LCM aggregate. The criteria for unstable propagation of existing near-wellbore fractures, together with those for initiating secondary fractures from the wellbore, are obtained. Results suggest that, in many circumstances, the occurrence of both incidents can be prevented, if the LCM blend is properly engineered to recover certain depositional and mechanical properties at downhole conditions. Under such optimal design conditions, the maximum ECD to which the breakdown limit of a permeable formation could be enhanced is predicted.


Author(s):  
Ubedullah Ansari ◽  
Cheng YuanFang ◽  
Li QingChao ◽  
Georgia George Mawaipopo ◽  
Jia Wei

Sign in / Sign up

Export Citation Format

Share Document