scholarly journals Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning

2009 ◽  
Vol 157 (1-2) ◽  
pp. 44-54 ◽  
Author(s):  
Zenaida Castillo ◽  
Xueying Xie ◽  
Danny C. Sorensen ◽  
Mark Embree ◽  
Matteo Pasquali
2016 ◽  
Author(s):  
Janek Meyer ◽  
Hannes Renzsch ◽  
Kai Graf ◽  
Thomas Slawig

While plain vanilla OpenFOAM has strong capabilities with regards to quite a few typical CFD-tasks, some problems actually require additional bespoke solvers and numerics for efficient computation of high-quality results. One of the fields requiring these additions is the computation of large-scale free-surface flows as found e.g. in naval architecture. This holds especially for the flow around typical modern yacht hulls, often planing, sometimes with surface-piercing appendages. Particular challenges include, but are not limited to, breaking waves, sharpness of interface, numerical ventilation (aka streaking) and a wide range of flow phenomenon scales. A new OF-based application including newly implemented discretization schemes, gradient computation and rigid body motion computation is described. In the following the new code will be validated against published experimental data; the effect on accuracy, computational time and solver stability will be shown by comparison to standard OF-solvers (interFoam / interDyMFoam) and Star CCM+. The code’s capabilities to simulate complex “real-world” flows are shown on a well-known racing yacht design.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wei Diao ◽  
Hao Yuan ◽  
Liang Chen ◽  
Xujin Zhang ◽  
Cunze Zhang

The temperature distribution and pollutant distribution in large reservoirs have always been a hotspot in the field of hydraulics and environmentology, and the three-dimensional numerical modeling that can effectively simulate the interactions between the temperature fields, concentration fields, and flow fields needs to be proposed. The double-diffusive convection lattice Boltzmann method is coupled with a single-phase volume of fluid model for simulating heat and contaminant transfer in large-scale free surface flows. The coupling model is used to simulate the double-diffusive natural convection in a cubic cavity and the temperature distribution of a model reservoir. The mechanism of convection-diffusion, gravity sinking flow, and the complexity of the temperature and the pollutant redistribution process are analyzed. Good agreements between the simulated results and the reference data validate the accuracy and effectiveness of the proposed coupling model in studying free surface flows with heat and contaminant transfer. At last, the temporal and spatial variations of flow state, water temperature stratification, and pollutant transport in the up-reservoir of a pumped-storage power station are simulated and analyzed by the proposed model. The obtained variations of the flow field agree well with the observations in the physical model test and in practical engineering. In addition, the simulated temperature field and concentration field are also consistent with the general rules, which demonstrates the feasibility of the coupling model in simulating temperature and pollutant distribution problems in realistic reservoirs and shows its good prospects in engineering application.


2015 ◽  
Vol 56 (10) ◽  
Author(s):  
Guillaume Gomit ◽  
Ludovic Chatellier ◽  
Damien Calluaud ◽  
Laurent David ◽  
Didier Fréchou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document