Advanced CFD Simulations of free-surface flows around modern sailing yachts using a newly developed openFOAM solver

2016 ◽  
Author(s):  
Janek Meyer ◽  
Hannes Renzsch ◽  
Kai Graf ◽  
Thomas Slawig

While plain vanilla OpenFOAM has strong capabilities with regards to quite a few typical CFD-tasks, some problems actually require additional bespoke solvers and numerics for efficient computation of high-quality results. One of the fields requiring these additions is the computation of large-scale free-surface flows as found e.g. in naval architecture. This holds especially for the flow around typical modern yacht hulls, often planing, sometimes with surface-piercing appendages. Particular challenges include, but are not limited to, breaking waves, sharpness of interface, numerical ventilation (aka streaking) and a wide range of flow phenomenon scales. A new OF-based application including newly implemented discretization schemes, gradient computation and rigid body motion computation is described. In the following the new code will be validated against published experimental data; the effect on accuracy, computational time and solver stability will be shown by comparison to standard OF-solvers (interFoam / interDyMFoam) and Star CCM+. The code’s capabilities to simulate complex “real-world” flows are shown on a well-known racing yacht design.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wei Diao ◽  
Hao Yuan ◽  
Liang Chen ◽  
Xujin Zhang ◽  
Cunze Zhang

The temperature distribution and pollutant distribution in large reservoirs have always been a hotspot in the field of hydraulics and environmentology, and the three-dimensional numerical modeling that can effectively simulate the interactions between the temperature fields, concentration fields, and flow fields needs to be proposed. The double-diffusive convection lattice Boltzmann method is coupled with a single-phase volume of fluid model for simulating heat and contaminant transfer in large-scale free surface flows. The coupling model is used to simulate the double-diffusive natural convection in a cubic cavity and the temperature distribution of a model reservoir. The mechanism of convection-diffusion, gravity sinking flow, and the complexity of the temperature and the pollutant redistribution process are analyzed. Good agreements between the simulated results and the reference data validate the accuracy and effectiveness of the proposed coupling model in studying free surface flows with heat and contaminant transfer. At last, the temporal and spatial variations of flow state, water temperature stratification, and pollutant transport in the up-reservoir of a pumped-storage power station are simulated and analyzed by the proposed model. The obtained variations of the flow field agree well with the observations in the physical model test and in practical engineering. In addition, the simulated temperature field and concentration field are also consistent with the general rules, which demonstrates the feasibility of the coupling model in simulating temperature and pollutant distribution problems in realistic reservoirs and shows its good prospects in engineering application.


2017 ◽  
Vol 86 (9) ◽  
pp. 607-624 ◽  
Author(s):  
Ravindra Pethiyagoda ◽  
Timothy J. Moroney ◽  
Scott W. McCue

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1349 ◽  
Author(s):  
Mohammad Amin Nabian ◽  
Leila Farhadi

A Multi-Resolution Weakly Compressible Moving-Particle Semi-Implicit (MR-WC-MPS) method is presented in this paper for simulation of free-surface flows. To reduce the computational costs, as with the multi-grid schemes used in mesh-based methods, there is also a need in particle methods to efficiently capture the characteristics of different flow regions with different levels of complexity in different spatial resolutions. The proposed MR-WC-MPS method allows the use of particles with different sizes in a computational domain, analogous to multi-resolution grid in grid-based methods. To evaluate the accuracy and efficiency of the proposed method, it is applied to the dam-break and submarine landslide tests. It is shown that the MR-WC-MPS results, while about 15% faster, are in good agreement with the conventional single-resolution MPS results and experimental results. The remarkable ability of the MR-WC-MPS method in providing robust savings in computational time for up to 60% is then shown by applying the method for simulation of extended submarine landslide test.


Sign in / Sign up

Export Citation Format

Share Document