In-situ observations on shear-banding process during tension of a Zr-based bulk metallic glass composite with dendrites

2021 ◽  
Vol 565 ◽  
pp. 120841
Author(s):  
G.H. Duan ◽  
M.Q. Jiang ◽  
X.F. Liu ◽  
L.H. Dai ◽  
J.X. Li
2014 ◽  
Vol 586 ◽  
pp. 155-158 ◽  
Author(s):  
Shengli Zhu ◽  
Guoqiang Xie ◽  
Hao Wang ◽  
Xianjin Yang ◽  
Zhenduo Cui ◽  
...  

2019 ◽  
Vol 26 (08) ◽  
pp. 1950037
Author(s):  
BO SHI ◽  
SHIYU LUAN ◽  
PEIPENG JIN

Nanoscale dimples and periodic corrugations are observed on the fracture surface of Zr-based bulk metallic glass composite (BMGC). The nanoscale periodic corrugations display a curved shape, which is different from that observed in previous works. In addition, the crystallization behavior of [Formula: see text][Formula: see text][Formula: see text][Formula: see text] BMG was investigated. The second crystallization event of Zr-Cu-Ni-Al BMG can be controlled by annealing or tuning cooling rate. The in situ Zr-based BMGC was prepared via lowering cooling rate. The Zr-based BMGC displays completely brittleness.


2014 ◽  
Vol 78-79 ◽  
pp. 21-24 ◽  
Author(s):  
Yuan-Yun Zhao ◽  
He Men ◽  
Diana Estévez ◽  
Yan Liu ◽  
Xinmin Wang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1158
Author(s):  
Tuo Wang ◽  
Xiaohui Yang ◽  
Qiang Li ◽  
Chuntao Chang

In this work, a small amount of Nb has been added in a Zr52Cu42.5Al5.5 bulk metallic glass, and a Zr52Cu42Al5.5Nb0.5 bulk metallic glass composite with dual-amorphous and nanocrystal structures has been developed for the first time. This in situ formed bulk metallic glass composite has a larger room compressive plasticity of above 13% than that of the Zr52Cu42.5Al5.5 bulk metallic glass. The excellent plasticity of the bulk metallic glass composite is attributed to the phase-separated matrix with micro-nanocrystal and the nanocrystallization during the deforming process. This work may give a new sight into design bulk metallic glass composites and the underlying mechanism for deformation.


2007 ◽  
Vol 1048 ◽  
Author(s):  
Hui Wang ◽  
Ashraf Bastawros ◽  
S. Bulent Biner

AbstractThe deformation and damage evolution behavior of a Ni-based bulk metallic glass composite reinforced with elongated brass phase is studied under cylindrical indentation. The estimated fracture toughness values based on the energy dissipation and the in-situ observation during the loading reveal the details of the damage evolution and toughening mechanisms in this composite system. The results indicate that the enhanced toughness of the BMG composite is plausibly an outcome of crack bridging mechanisms by the ductile brass phase, rather than a diffused array of nucleated shear bands in the hard BMG and arrest by the ductile reinforcing phase.


Sign in / Sign up

Export Citation Format

Share Document