The Hausdorff dimension spectrum of Renyi-like continued fractions

Author(s):  
Andrei E. Ghenciu ◽  
Sara Munday
2019 ◽  
Vol 18 (11) ◽  
pp. 1950216
Author(s):  
Yiftach Barnea ◽  
Matteo Vannacci

We prove that the inverse limits of certain iterated wreath products in product action have complete Hausdorff dimension spectrum with respect to their unique maximal filtration of open normal subgroups. Moreover we can produce explicitly subgroups with a specified Hausdorff dimension.


Computability ◽  
2021 ◽  
pp. 1-28
Author(s):  
Neil Lutz ◽  
D.M. Stull

This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp ( L ) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim ( a , b ) is equal to the effective packing dimension Dim ( a , b ), then sp ( L ) contains a unit interval. We also show that, if the dimension dim ( a , b ) is at least one, then sp ( L ) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite.


Nonlinearity ◽  
2020 ◽  
Vol 33 (6) ◽  
pp. 2615-2639 ◽  
Author(s):  
Ayreena Bakhtawar ◽  
Philip Bos ◽  
Mumtaz Hussain

Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950139
Author(s):  
WEIBIN LIU ◽  
SHUAILING WANG

For continued fraction dynamical system [Formula: see text], we give a classification of the underlying space [Formula: see text] according to the orbit of a given point [Formula: see text]. The sizes of all classes are determined from the viewpoints of measure, Hausdorff dimension and topology. For instance, the Hausdorff dimension of the distal set of [Formula: see text] is one and the Hausdorff dimension of the asymptotic set is either zero or [Formula: see text] according to [Formula: see text] is rational or not.


Sign in / Sign up

Export Citation Format

Share Document