High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions

2015 ◽  
Vol 466 ◽  
pp. 653-657 ◽  
Author(s):  
Yoshito Sugino ◽  
Shigeharu Ukai ◽  
Naoko Oono ◽  
Shigenari Hayashi ◽  
Takeji Kaito ◽  
...  
2014 ◽  
Vol 452 (1-3) ◽  
pp. 628-632 ◽  
Author(s):  
Yoshito Sugino ◽  
Shigeharu Ukai ◽  
Bin Leng ◽  
Naoko Oono ◽  
Shigenari Hayashi ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


2016 ◽  
Vol 723 ◽  
pp. 21-26
Author(s):  
Tsutomu Ito ◽  
Takashi Mizuguchi

In this study, the superplastic behavior on a fine-grained aluminum solid solution alloy consisting of thermally unstable microstructures was investigated. In order to obtain the fine-grained microstructure, friction stir processing (FSP) was applied to a commercial 5083 aluminum alloy. An equiaxial fine-grained microstructure of 7.8 mm was obtained after FSP, but this microstructure was thermally unstable at high temperatures. Commonly, for fine-grained superplasticity to occur (or to continue grain boundary sliding (GBS)), it is necessary to keep the fine-grained microstructure to less than 10 mm during the high-temperature deformation. However, in this study, a large elongation of over 200% was observed at high temperatures in spite of the occurrence of grain growth. From the microstructural observations, it was determined that the fine-grained microstructure was maintained until the early stage of deformation, but the transgranular deformation was observed at a strain of over 100%. The microstructural feature of the abovementioned transgranular deformation is similar to the deformation microstructure of the solute drag creep occurring in "Class I"-type solid solution alloys. This indicates that the deformation mechanism transition from GBS to the solute drag creep occurred during high-temperature deformation. Here, the possibility of occurrence of the superplastic elongation through deformation mechanism transition is discussed as a model of the thermally unstable aluminum solid solution alloy.


1989 ◽  
Vol 37 (2) ◽  
pp. 499-505 ◽  
Author(s):  
H. Kurishita ◽  
H. Yoshinaga ◽  
H. Nakashima

2012 ◽  
Vol 182-183 ◽  
pp. 189-193
Author(s):  
Ting Qu Li ◽  
M. Gao ◽  
S.H. Wang ◽  
Zhan Yi Cao

In this paper, the high temperature tensile properties of the LAZ532-2RE alloy prepared by hot extruded processing after vacuum casting was investaged. The tensile properties of the extruded LAZ532-2RE alloy specimens were tested at different temperature with different strain rate. The microstructures near the fractured surfaces were observed using microscope in order to investigate the dominant deformation mechanism. The activation energy was calculated to explain the high temperature deformation mechanism. The result indicated that the strength of LAZ532-2RE alloy was high at the temperature range from 398K to 423K. Meanwhile, the fracture elongation of the alloy reaches 121% at 523K under strain rate 1×10-3s-1.


Sign in / Sign up

Export Citation Format

Share Document