scholarly journals A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations

2016 ◽  
Vol 24 (4) ◽  
pp. 638-643 ◽  
Author(s):  
F. Ghomanjani
Author(s):  
Raj Kumar Biswas ◽  
Siddhartha Sen

A numerical technique for the solution of a class of fractional optimal control problems has been proposed in this paper. The technique can used for problems defined both in terms of Riemann-Liouville and Caputo fractional derivatives. In this technique a Reflection Operator is used to convert the right Riemann-Liouville derivative into an equivalent left Riemann-Liouville derivative, and then the two point boundary value problem is solved numerically. The proposed method is straightforward and it uses an available numerical technique to solve fractional differential equations resulting from the formulation. Examples considered here show that the numerical results obtained using this and other techniques agree very well.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohamed Abdelhakem ◽  
Doha Mahmoud ◽  
Dumitru Baleanu ◽  
Mamdouh El-kady

AbstractIn this work, a technique for finding approximate solutions for ordinary fraction differential equations (OFDEs) of any order has been proposed. The method is a hybrid between Galerkin and collocation methods. Also, this method can be extended to approximate fractional integro-differential equations (FIDEs) and fractional optimal control problems (FOCPs). The spatial approximations with their derivatives are based on shifted ultraspherical polynomials (SUPs). Modified Galerkin spectral method has been used to create direct approximate solutions of linear/nonlinear ordinary fractional differential equations, a system of ordinary fraction differential equations, fractional integro-differential equations, or fractional optimal control problems. The aim is to transform those problems into a system of algebraic equations. That system will be efficiently solved by any solver. Three spaces of collocation nodes have been used through that transformation. Finally, numerical examples show the accuracy and efficiency of the investigated method.


2017 ◽  
Vol 40 (6) ◽  
pp. 2054-2061 ◽  
Author(s):  
Ali Alizadeh ◽  
Sohrab Effati

In this study, we use the modified Adomian decomposition method to solve a class of fractional optimal control problems. The performance index of a fractional optimal control problem is considered as a function of both the state and the control variables, and the dynamical system is expressed in terms of a Caputo type fractional derivative. Some properties of fractional derivatives and integrals are used to obtain Euler–Lagrange equations for a linear tracking fractional control problem and then, the modified Adomian decomposition method is used to solve the resulting fractional differential equations. This technique rapidly provides convergent successive approximations of the exact solution to a linear tracking fractional optimal control problem. We compare the proposed technique with some numerical methods to demonstrate the accuracy and efficiency of the modified Adomian decomposition method by examining several illustrative test problems.


Sign in / Sign up

Export Citation Format

Share Document