scholarly journals Characterization of metal – metal and metal – ligand interactions in binuclear MnPt vinylidene complexes by molecular orbital and charge density analyses

Author(s):  
Aleksey M. Shor ◽  
Vladimir A. Nasluzov ◽  
Anatoly I. Rubaylo ◽  
Elena A. Ivanova-Shor
2003 ◽  
Vol 59 (2) ◽  
pp. 234-247 ◽  
Author(s):  
Louis J. Farrugia ◽  
Paul R. Mallinson ◽  
Brian Stewart

An accurate experimental charge density study at 100 K of Mn2(CO)10 [bis(pentacarbonylmanganese)(Mn—Mn)] has been undertaken. A comparison with previously reported structural determinations reveals no evidence for significant Mn—Mn bond lengthening between 100 and 296 K. The nature of the metal–metal and metal–ligand atom interactions has been studied by topological analysis using the Atoms in Molecules (AIM) approach of Bader [(1990), Atoms in Molecules: a Quantum Theory.Oxford: Clarendon Press]. An analysis of the density ρ(r), the Laplacian of the density ∇2ρ(r b ) and the total energy densities H(r b ) at the bond critical points is used to classify all the chemical bonds as covalent in nature. The results are compared qualitatively and quantitatively with previous charge density studies on this molecule and DFT calculations at the 6-311+G* B3LYP level. The topological properties of the theoretical and experimental densities are in close agreement.


2014 ◽  
Vol 1655 ◽  
Author(s):  
Daniel M. Chevrier ◽  
Amares Chatt ◽  
Peng Zhang ◽  
Chenjie Zeng ◽  
Rongchao Jin

ABSTRACTThiolate-gold nanoclusters exhibit unique optical, magnetic and chiral properties, which are attractive for novel applications in nanotechnology. A fundamental challenge facing these nanomaterials is being able to study and understand their physical properties in various experimental conditions. To overcome this, extended X-ray absorption fine structure (EXAFS) spectroscopy can be employed to probe the Au local structure of thiolate-gold nanoclusters in a variety of conditions, providing valuable structural information from multiple bonding environments (i.e. metal-metal and metal-ligand interactions). This study discusses a methodology for conducting a multishell EXAFS fitting analysis that can be implemented for thiolate-gold nanocluster systems. Specifically, experimental and simulated EXAFS data for Au36(SR)24 nanoclusters are examined with a total of 5 scattering paths fitted to the experimental data.


Sign in / Sign up

Export Citation Format

Share Document