scholarly journals Schofield sequences in the Euclidean case

2021 ◽  
Vol 225 (5) ◽  
pp. 106586
Author(s):  
Csaba Szántó ◽  
István Szöllősi
Keyword(s):  
Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Pedro Pablo Ortega Palencia ◽  
Ruben Dario Ortiz Ortiz ◽  
Ana Magnolia Marin Ramirez

In this article, a simple expression for the center of mass of a system of material points in a two-dimensional surface of Gaussian constant negative curvature is given. By using the basic techniques of geometry, we obtained an expression in intrinsic coordinates, and we showed how this extends the definition for the Euclidean case. The argument is constructive and serves to define the center of mass of a system of particles on the one-dimensional hyperbolic sphere LR1.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


1997 ◽  
Vol 39 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Uǧur Dursunf
Keyword(s):  

B. Rouxel [7] and S. J. Li and C. S. Houh [6] have generalised the notion of an -submanifold (Chen submanifold) to an k-submanifold. In [1] we have studied the relation between their definitions for the Euclidean case.


Author(s):  
Valery V. Volchkov ◽  
Vitaly V. Volchkov
Keyword(s):  

1974 ◽  
Vol 17 (1) ◽  
pp. 45-50 ◽  
Author(s):  
C. W. L. Garner

AbstractIt is well known that in the Euclidean plane there are seven distinct frieze patterns, i.e. seven ways to generate an infinite design bounded by two parallel lines. In the hyperbolic plane, this can be generalized to two types of frieze patterns, those bounded by concentric horocycles and those bounded by concentric equidistant curves. There are nine such frieze patterns; as in the Euclidean case, their symmetry groups are and


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


Sign in / Sign up

Export Citation Format

Share Document