Visualization of enteric neural crest cell migration in SOX10 transgenic mouse gut using time-lapse fluorescence imaging

2011 ◽  
Vol 46 (12) ◽  
pp. 2305-2308 ◽  
Author(s):  
Katsumi Miyahara ◽  
Yoshifumi Kato ◽  
Hiroyuki Koga ◽  
Rafael Dizon ◽  
Geoffrey J. Lane ◽  
...  
2019 ◽  
Author(s):  
Mary Cathleen McKinney ◽  
Rebecca McLennan ◽  
Rasa Giniunaite ◽  
Ruth E. Baker ◽  
Philip K. Maini ◽  
...  

ABSTRACTVertebrate head morphogenesis involves orchestrated cell growth and tissue movements of the mesoderm and neural crest to form the distinct craniofacial pattern. To better understand structural birth defects, it is important that we learn how these processes are controlled. Here, we examine this question during chick head morphogenesis using time-lapse imaging, computational modeling, and experiment. We find that head mesodermal cells are inherently dynamic in culture and alter cell behaviors in the presence of either ectoderm or neural crest cells. Mesodermal cells in vivo display large-scale whirling motions that rapidly transition to lateral, directed movements after neural crest cells emerge. Computer model simulations predict distinct changes in neural crest migration as the spatio-temporal growth profile of the mesoderm is varied. BrdU-labeling and photoconversion combined with cell density measurements then reveal non-uniform mesoderm growth in space and time. Chemical inhibition of head mesoderm proliferation or ablation of premigratory neural crest alters mesoderm growth and neural crest migration, implying a dynamic feedback between tissue growth and neural crest cell signaling to confer robustness to the system.Summary StatementDynamic feedback between tissue growth and neural crest cell migration ensures robust neural crest stream formation and head morphogenesis shown by time-lapse microscopy, mathematical modeling and embryo perturbations.


2011 ◽  
Vol 356 (1) ◽  
pp. 197
Author(s):  
Dennis A. Ridenour ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Katherine W. Prather ◽  
Craig L. Semerad ◽  
...  

2003 ◽  
Vol 226 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Yanding Zhang ◽  
Shusheng Wang ◽  
Yiqiang Song ◽  
Jun Han ◽  
Yang Chai ◽  
...  

2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Development ◽  
1988 ◽  
Vol 103 (4) ◽  
pp. 743-756 ◽  
Author(s):  
H.H. Epperlein ◽  
W. Halfter ◽  
R.P. Tucker

It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25–33) and the axolotl (stages 28–35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document