WITHDRAWN: Effective surface area of multiblock copolymer electrolyte membranes evaluated by e-AFM and its impact on fuel cell performance

Author(s):  
Naohiko Takimoto ◽  
Shogo Takamuku ◽  
Mitsutaka Abe ◽  
Akihiro Ohira ◽  
Hae-Seung Lee ◽  
...  
2009 ◽  
Vol 194 (2) ◽  
pp. 662-667 ◽  
Author(s):  
Naohiko Takimoto ◽  
Shogo Takamuku ◽  
Mitsutaka Abe ◽  
Akihiro Ohira ◽  
Hae-Seung Lee ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5440 ◽  
Author(s):  
Khadijeh Hooshyari ◽  
Bahman Amini Horri ◽  
Hamid Abdoli ◽  
Mohsen Fallah Vostakola ◽  
Parvaneh Kakavand ◽  
...  

This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3832
Author(s):  
Irene Gatto ◽  
Ada Saccà ◽  
David Sebastián ◽  
Vincenzo Baglio ◽  
Antonino Salvatore Aricò ◽  
...  

Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied, considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures (80–95 °C), low pressure, and reduced humidity (50% RH. %). The best fuel cell performance was found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a maximum catalyst utilization.


Sign in / Sign up

Export Citation Format

Share Document