Effects of ionomer content and oxygen permeation of the catalyst layer on proton exchange membrane fuel cell cold start-up

2010 ◽  
Vol 195 (4) ◽  
pp. 1038-1045 ◽  
Author(s):  
Y. Hiramitsu ◽  
N. Mitsuzawa ◽  
K. Okada ◽  
M. Hori
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4456
Author(s):  
Wei Jiang ◽  
Ke Song ◽  
Bailin Zheng ◽  
Yongchuan Xu ◽  
Ruoshi Fang

In order to realize the low temperature and rapid cold start-up of a proton exchange membrane fuel cell stack, a dynamic model containing 40 single proton exchange membrane fuel cells is established to estimate the melting time of the proton exchange membrane fuel cell stack as well as to analyze the melting process of the ice by using the obtained liquid–solid boundary. The methods of proton exchange membrane electric heating and electrothermal film heating are utilized to achieve cold start-up of the proton exchange membrane fuel cell (PEMFC). The fluid simulation software fluent is used to simulate and analyze the process of melting ice. The solidification and melting model and multi-phase flow model are introduced. The pressure-implicit with splitting of operators algorithm is also adopted. The results show that both the proton exchange membrane electric heating technology and the electrothermal film heating method can achieve rapid cold start-up. The interior ice of the proton exchange membrane fuel cell stack melts first, while the first and 40th pieces melt afterwards. The ice melting time of the proton exchange membrane fuel cell stack is 32.5 s and 36.5 s with the two methods, respectively. In the end, the effect of different electrothermal film structures on cold start-up performance is studied, and three types of pore diameter electrothermal films are established. It is found that the electrothermal film with small holes melts completely first, and the electrothermal film with large holes melts completely last.


Author(s):  
Yanbo Yang ◽  
Tiancai Ma ◽  
Fenglai Pei ◽  
Weikang Lin ◽  
Kai Wang ◽  
...  

Abstract The constant voltage cold start of the proton exchange membrane fuel cell (PEMFC) is usually operated at a low start voltage in order to ensure high heat generation, which can shorten the process of the PEMFC cold start. However, the effect of constant voltage cold start on the durability of PEMFC is still unclear. Thus, in this work, the PEMFC is tested repeatedly at a low start-voltage to simulate its actual operating state in the vehicle. Then the effect of the PEMFC durability under constant voltage cold start is investigated by polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy, transmission electron microscope and ion chromatography. After the repeatedly cold start, the output performance of the PEMFC decreases significantly. According to the characterization results, the degradation mechanism of the PEMFC at the constant voltage cold start is demonstrated to be that the PEMFC start-up repeatedly at low start-voltage leads to the decomposition of membrane polymer structure and promotes the crossover of H2. Meanwhile, the PEMFC start-up repeatedly at low start-voltage also leads to the agglomeration of catalysts, which reduces the active area of catalysts and ultimately results in the degradation of fuel cell performance. Above all, this study proves that the durability of PEMFC can be shortened by the constant voltage cold start at 0.1 V, which provides a reference for the development of the PEMFC cold start control strategy.


Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119910
Author(s):  
Zirong Yang ◽  
Kui Jiao ◽  
Kangcheng Wu ◽  
Weilong Shi ◽  
Shangfeng Jiang ◽  
...  

2013 ◽  
Vol 58 (1) ◽  
pp. 897-905 ◽  
Author(s):  
T. J. Dursch ◽  
J. F. Liu ◽  
G. J. Trigub ◽  
C. J. Radke ◽  
A. Z. Weber

Sign in / Sign up

Export Citation Format

Share Document