Thickness effects of anode catalyst layer on reversal tolerant performance in proton exchange membrane fuel cell

Author(s):  
Wei Chen ◽  
Chao Cai ◽  
Shang Li ◽  
Jinting Tan ◽  
Mu Pan
2014 ◽  
Vol 43 (9) ◽  
pp. 3601-3610 ◽  
Author(s):  
Sheng-Yu Fang ◽  
Lay Gaik Teoh ◽  
Rong-Hsin Huang ◽  
Wen-Kai Chao ◽  
Tien-Jen Lin ◽  
...  

2016 ◽  
Vol 09 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Chien-Liang Lin ◽  
Shih-Chieh Hsu ◽  
Wei-Yu Ho

Sulfonated SiO2 was added on an anode catalyst layer to manufacture a hygroscopic electrode for self-humidifying proton exchange membrane fuel cells (PEMFCs). The inherent humidity of a proton exchange membrane (PEM) determines the electrical performance of PEMFCs. To maintain the high moisture content of the PEM, self-humidifying PEMFCs can use the water produced by the fuel cell reaction and, thus, do not require external humidification. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and water contact angle measurement tests were performed to characterize the structures and properties of sulfonated SiO2 and the related electrodes, and the electric current and voltage (I–V) performance curve tests for the fuel cells were conducted under differing gas humidification conditions. When 0.01[Formula: see text]mg/cm2 of sulfonated SiO2 was added, the electrical performance of the fuel cells (50[Formula: see text]C) increased 29% and 59% when the fuel cell reaction gases were humidified at 70[Formula: see text]C and 50[Formula: see text]C, respectively.


Author(s):  
N. Akhtar ◽  
P. J. A. M. Kerkhof

The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a catalyst layer (CL). The liquid water saturation profiles have been calculated for varying structural and physical properties, i.e., porosity, permeability, thickness and contact angle for each of these layers. It has been observed that each layer has its own role in determining the liquid water saturation within the CL. Among all the layers, the GDL is the most influential layer that governs the transport phenomena within the PEMFC cathode. Besides, the thickness of the CL also affects the liquid water saturation and it should be carefully controlled.


Author(s):  
Utku Gulan ◽  
Hasmet Turkoglu ◽  
Irfan Ar

In this study, the fluid flow and cell performance in cathode side of a proton exchange membrane (PEM) fuel cell were numerically analyzed. The problem domain consists of cathode gas channel, cathode gas diffusion layer, and cathode catalyst layer. The equations governing the motion of air, concentration of oxygen, and electrochemical reactions were numerically solved. A computer program was developed based on control volume method and SIMPLE algorithm. The mathematical model and program developed were tested by comparing the results of numerical simulations with the results from literature. Simulations were performed for different values of inlet Reynolds number and inlet oxygen mole fraction at different operation temperatures. Using the results of these simulations, the effects of these parameters on the flow, oxygen concentration distribution, current density and power density were analyzed. The simulations showed that the oxygen concentration in the catalyst layer increases with increasing Reynolds number and hence the current density and power density of the PEM fuel cell also increases. Analysis of the data obtained from simulations also shows that current density and power density of the PEM fuel cell increases with increasing operation temperature. It is also observed that increasing the inlet oxygen mole fraction increases the current density and power density.


Sign in / Sign up

Export Citation Format

Share Document