constant voltage
Recently Published Documents


TOTAL DOCUMENTS

981
(FIVE YEARS 236)

H-INDEX

37
(FIVE YEARS 7)

Author(s):  
Kyojin Ku ◽  
Seoung-Bum Son ◽  
Jihyeon Gim ◽  
Jehee Park ◽  
Yujia Liang ◽  
...  

This study proposes constant-voltage charging as a promising fast-charging protocol and reveals the origin of capacity degradation in constant-voltage charging.


2021 ◽  
pp. 581-586
Author(s):  
Volodymyr Samotyy ◽  
Ulyana Dzelendzyak ◽  
Andriy Pavelchak

The evolutionary model of voltage multiplier parametric optimization which includes 5 diodes and 5 capacitors is reviewed. It executes the transformation of alternating into constant voltage using a five times larger amplitude. The valve work is modelled according to the scheme of an ideal key. The original mathematical model of voltage multiplier which includes additional logical variables is deducted. It aссepts binary meanings 0 and 1, where 0 corresponds to closed valve status and 1 corresponds to open. In order to receive such a model, it is necessary to indicate the amount of open and closed valve combinations. Then for each of them, it is necessary to write the system of differential equations. Comparing them with each other the single differential equation system with additional logical variables is written as a generalization. The evolutional model is used in order to select the capacitor volume meaning. The goal function forecasts two conditions: maximum meaning of output voltage 1 kV and its minimal fluctuations in the stable regime.


2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Quanlei Zhang ◽  
Chunfang Wang ◽  
Lingyun Yang ◽  
Zhihao Guo

With the development of wireless power transfer (WPT), the wireless charging has become a research hotspot. This paper proposes a novel single-switch hybrid compensation topology, which can change the compensation network to realize the constant-current (CC) and constant-voltage (CV) output. The zero voltage switching (ZVS) margin can be designed to increase the stability of the system. In addition, the magnetic coupler adopts a composite shielding structure composed of ferrite, nanocrystalline, and aluminium foil. The composite shielding structure has a better shielding effect on magnetic flux leakage, and its weight is lighter. The composite shielding structure is expected to be used in the wireless charging system of electric vehicles (EVs). Finally, an experimental prototype is built to verify the theoretical analysis, and the maximum efficiency can reach 91.4%.


2021 ◽  
Vol 11 (24) ◽  
pp. 12143
Author(s):  
Jiaqi Wu ◽  
Xiaodong Li ◽  
Sheng-Zhi Zhou ◽  
Song Hu ◽  
Hao Chen

To meet the requirements of charging the mainstream rechargeable batteries, in this work, a dual-bridge resonant converter (DBRC) is operated as a battery charger. Thanks to the features of this topology, the required high efficiency can be achieved with a wide range of battery voltage and current by using different modulation variables. Firstly, a typical charging process including constant-voltage stage and constant-current stage is indicated. Then, two different modulation methods of the DBRC are proposed, both of which can realize constant-voltage charging and constant-current charging. Method I adopts phase-shift modulation with constant switching frequency while Method II adopts varying frequency modulation. Furthermore, as guidance for practical application, the design principles and detailed design procedures of the DBRC are customized for the two modulation methods respectively in order to reduce the switching loss and conduction loss. Consequently, the full soft-switching operation with low rms tank current is achieved under the two modulation methods, which contributes to the high efficiency of the whole charging process. At last extensive simulation and experimental tests on a lab prototype converter are performed, which prove the feasibility and effectiveness of the proposed modulation strategies.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8549
Author(s):  
Rudy Gianto

At present, the penetration of wind-driven electric generators or wind power plants (WPPs) in electric power systems is getting more and more extensive. To evaluate the steady state performances of such power systems, developing a valid WPP model is therefore necessary. This paper proposes a new method in modeling the most popular type of WPP, i.e., DFIG (doubly fed induction generator)-based WPP, to be used in power system steady state load flow analysis. The proposed model is simple and derived based on the formulas that calculate turbine mechanical power and DFIG power. The main contribution of the paper is that, in contrast to the previous models where the DFIG power factor has been assumed to be constant at unity, the constant voltage model proposed in this paper allows the power factor to vary in order to keep the voltage at the desired value. Another important contribution is that the proposed model can be implemented in both sub-synchronous and super-synchronous conditions (it is to be noted that most of the previous models use two different mathematical models to represent the conditions). The case study is also presented in the present work, and the results of the study confirm the validity of the proposed DFIG model.


Author(s):  
Kosuke Yanai ◽  
Weifang Lu ◽  
Yoma Yamane ◽  
Keita Kodera ◽  
Yiyu Ou ◽  
...  

Abstract We investigated the effects of different growth facets of 6H-SiC and different voltage waveforms on the porous structure and luminescence properties. The structure formed on the surface after anodic etching significantly changed because of the difference in the growth plane, whereas dendritic and columnar pores were observed inside the Si- and C-face samples. These large porous structures were shown to promote the penetration depth of the atomic-layer-deposited Al2O3 films, and a recorded passivation depth of 30-µm layer was confirmed in C-face porous SiC. From the results using fluorescence microscope and PL spectra measurement, it was concluded that the pulsed-voltage etching was preferable for fabricating uniform porous structures compared with the constant-voltage etching. However, the enhancement of the luminescence intensity needs to be further improved to realize high luminescent efficiency in porous fluorescent SiC.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2900
Author(s):  
Vincenzo Castiglia ◽  
Nicola Campagna ◽  
Rosario Miceli ◽  
Fabio Viola ◽  
Frede Blaabjerg

This article proposes a quasi-Z-source (qZS)-based Inductive Power Transfer (IPT) system for Electric Vehicles (EVs) charging applications. The IPT systems use the magnetic field to transfer power between two coils wirelessly, achieving improved reliability, safety and less environmental impact. Compared to the conventional IPT system, the proposed qZS-IPT system simultaneously achieves DC/DC regulation and DC/AC conversion through a single-stage conversion, thus lowering the cost and complexity of the system. Moreover, the reliability of the system is improved thanks to the qZS network shoot-though immunity and the reduced number of switches. To ensure the battery efficient charging and long service life, the constant current/constant voltage (CC/CV) method is considered. With the proposed innovative modulation scheme, the qZS can easily change between buck and boost modes, respectively, lowering or increasing the secondary side current. A theoretical analysis is presented for system design. Simulation results based on a 25 kW (200 V/135 A) low duty EV charger are presented to verify the effectiveness of the proposed scheme. Experimental tests are performed on a 150 W scale-down prototype to validate the analysis and demonstrate the effectiveness of the proposed qZS-IPT system for CC/CV chargers.


Sign in / Sign up

Export Citation Format

Share Document