scholarly journals Hot-wire experimental investigation on turbulent Prandtl number in a rotating non-isothermal turbulent boundary layer

2020 ◽  
Vol 9 (4) ◽  
pp. 317-325
Author(s):  
Ran Gao ◽  
Haiwang Li ◽  
Ruquan You ◽  
Gangfu Li ◽  
Shuangzhi Xia
2015 ◽  
Vol 787 ◽  
pp. 84-115 ◽  
Author(s):  
Ali Doosttalab ◽  
Guillermo Araya ◽  
Jensen Newman ◽  
Ronald J. Adrian ◽  
Kenneth Jansen ◽  
...  

A zero-pressure-gradient turbulent boundary layer flowing over a transitionally rough surface (24-grit sandpaper) with$k^{+}\approx 11$and a momentum-thickness Reynolds number of approximately 2400 is studied using direct numerical simulation (DNS). Heat transfer between the isothermal rough surface and the turbulent flow with molecular Prandtl number$Pr=0.71$is simulated. The dynamic multiscale approach developed by Arayaet al.(J. Fluid Mech., vol. 670, 2011, pp. 581–605) is employed to prescribe realistic time-dependent thermal inflow boundary conditions. In general, the rough surface reduces mean and fluctuating temperature profiles with respect to the smooth surface flow when normalized by Wang & Castillo (J. Turbul., vol. 4, 2003, 006) inner/outer scaling. It is shown that the Reynolds analogy does not hold for$y^{+}<9$. In this region the value of the turbulent Prandtl number departs substantially from unity. Above this region the Reynolds analogy is only approximately valid, with the turbulent Prandtl number decreasing from 1 to 0.7 across the boundary layer for rough and smooth walls. In comparison with the smooth-wall case, the turbulent transport of heat per unit mass,$\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$, towards the wall is enhanced in the buffer layer, but the transport of$\overline{v^{\prime }v^{\prime }{\it\theta}^{\prime }}$away from the wall is reduced in the outer layer for the rough case; similar behaviour is found for the vertical transport of turbulent momentum per unit mass,$\overline{v^{\prime }u^{\prime }v^{\prime }}$. Above the roughness sublayer (3$k$–5$k$) it is found that most of the temperature field statistics, including higher-order moments and conditional averages, are highly similar for the smooth and rough surface flow, showing that the Townsend’s Reynolds number similarity hypothesis applies for the thermal field as well as the velocity field for the Reynolds number and$k^{+}$considered in this study.


1971 ◽  
Vol 50 (3) ◽  
pp. 493-512 ◽  
Author(s):  
A. K. Gupta ◽  
J. Laufer ◽  
R. E. Kaplan

An experimental investigation was performed to study the spatial coherence of structures in the sublayer of a turbulent boundary layer observed previously by flow visualization. The present work verifies these observations in an Eulerian reference frame and develops a statistical description of the phenomenon. The technique involves simultaneous digital sampling of an array of constant temperature hot-wire anemometers arranged to extract information about a spanwise variation in flow quantities. The quantitative description agrees with dimensionless measures of the structure scales previously published.


1981 ◽  
Vol 103 (1) ◽  
pp. 153-158 ◽  
Author(s):  
H. W. Coleman ◽  
R. J. Moffat ◽  
W. M. Kays

Heat transfer behavior of a fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Stanton numbers and profiles of mean temperature, turbulent Prandtl number, and turbulent heat flux are reported. Three equilibrium acceleration cases (one with blowing) and one non-equilibrium acceleration case were studied. For each acceleration case of this study, Stanton number increased over zero pressure gradient values at the same position or enthalpy thickness. Turbulent Prandtl number was found to be approximately constant at 0.7–0.8 across the layer, and profiles of the non-dimensional turbulent heat flux showed close agreement with those previously reported for both smooth and rough wall zero pressure gradient layers.


Sign in / Sign up

Export Citation Format

Share Document