Heat Transfer in the Accelerated Fully Rough Turbulent Boundary Layer

1981 ◽  
Vol 103 (1) ◽  
pp. 153-158 ◽  
Author(s):  
H. W. Coleman ◽  
R. J. Moffat ◽  
W. M. Kays

Heat transfer behavior of a fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Stanton numbers and profiles of mean temperature, turbulent Prandtl number, and turbulent heat flux are reported. Three equilibrium acceleration cases (one with blowing) and one non-equilibrium acceleration case were studied. For each acceleration case of this study, Stanton number increased over zero pressure gradient values at the same position or enthalpy thickness. Turbulent Prandtl number was found to be approximately constant at 0.7–0.8 across the layer, and profiles of the non-dimensional turbulent heat flux showed close agreement with those previously reported for both smooth and rough wall zero pressure gradient layers.

Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 37 ◽  
Author(s):  
Junji Huang ◽  
Jorge-Valentino Bretzke ◽  
Lian Duan

In this study, the ability of standard one- or two-equation turbulence models to predict mean and turbulence profiles, the Reynolds stress, and the turbulent heat flux in hypersonic cold-wall boundary-layer applications is investigated. The turbulence models under investigation include the one-equation model of Spalart–Allmaras, the baseline k - ω model by Menter, as well as the shear-stress transport k - ω model by Menter. Reynolds-Averaged Navier-Stokes (RANS) simulations with the different turbulence models are conducted for a flat-plate, zero-pressure-gradient turbulent boundary layer with a nominal free-stream Mach number of 8 and wall-to-recovery temperature ratio of 0.48 , and the RANS results are compared with those of direct numerical simulations (DNS) under similar conditions. The study shows that the selected eddy-viscosity turbulence models, in combination with a constant Prandtl number model for turbulent heat flux, give good predictions of the skin friction, wall heat flux, and boundary-layer mean profiles. The Boussinesq assumption leads to essentially correct predictions of the Reynolds shear stress, but gives wrong predictions of the Reynolds normal stresses. The constant Prandtl number model gives an adequate prediction of the normal turbulent heat flux, while it fails to predict transverse turbulent heat fluxes. The discrepancy in model predictions among the three eddy-viscosity models under investigation is small.


2015 ◽  
Vol 776 ◽  
pp. 512-530 ◽  
Author(s):  
S. Leonardi ◽  
P. Orlandi ◽  
L. Djenidi ◽  
R. A. Antonia

Direct numerical simulations (DNS) are carried out to study the passive heat transport in a turbulent channel flow with either square bars or circular rods on one wall. Several values of the pitch (${\it\lambda}$) to height ($k$) ratio and two Reynolds numbers are considered. The roughness increases the heat transfer by inducing ejections at the leading edge of the roughness elements. The amounts of heat transfer and mixing depend on the separation between the roughness elements, an increase in heat transfer accompanying an increase in drag. The ratio of non-dimensional heat flux to the non-dimensional wall shear stress is higher for circular rods than square bars irrespectively of the pitch to height ratio. The turbulent heat flux varies within the cavities and is larger near the roughness elements. Both momentum and thermal eddy diffusivities increase relative to the smooth wall. For square cavities (${\it\lambda}/k=2$) the turbulent Prandtl number is smaller than for a smooth channel near the wall. As ${\it\lambda}/k$ increases, the turbulent Prandtl number increases up to a maximum of 2.5 at the crests plane of the square bars (${\it\lambda}/k=7.5$). With increasing distance from the wall, the differences with respect to the smooth wall vanish and at three roughness heights above the crests plane, the turbulent Prandtl number is essentially the same for smooth and rough walls.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Abdalla Agrira ◽  
David R. Buttsworth ◽  
Mior A. Said

Due to the inherently unsteady environment of reciprocating engines, unsteady thermal boundary layer modeling may improve the reliability of simulations of internal combustion engine heat transfer. Simulation of the unsteady thermal boundary layer was achieved in the present work based on an effective variable thermal conductivity from different turbulent Prandtl number and turbulent viscosity models. Experiments were also performed on a motored, single-cylinder spark-ignition engine. The unsteady energy equation approach furnishes a significant improvement in the simulation of the heat flux data relative to results from a representative instantaneous heat transfer correlation. The heat flux simulated using the unsteady model with one particular turbulent Prandtl number model agreed with measured heat flux in the wide open and fully closed throttle cases, with an error in peak values of about 6% and 35%, respectively.


Author(s):  
Fabíola Paula Costa ◽  
Rubén Bruno Díaz ◽  
Pedro M. Milani ◽  
Jesuíno Takachi Tomita ◽  
Cleverson Bringhenti

Abstract Film cooling is an important technique to ensure safe operation and performance fulfillment of turbines. Its ultimate goal is to protect the axial turbine blades from high gas temperatures. An appropriate study is necessary in order to obtain a reliable representation of the flow characteristics involved in such phenomena. Because of the high computational cost of high-fidelity simulations, the low-fidelity simulation method Reynolds Averaged Navier Stokes (RANS) is commonly used in practical configurations. However, the majority of the current turbulent heat flux models fail to accurately predict heat transfer in film cooling flows. Recent work suggests the use of machine learning models to improve turbulent closure in these flows. In the present work, a machine learning model for spatially varying turbulent Prandtl number previously described in the literature is applied to a transverse film cooling flow consisting of a jet square channel. The results obtained in the present work were compared to adiabatic effectiveness experimental data available in the literature to assess the performance of the machine learning model. The results shown that for low blowing ratios (BR = 0.2 and BR = 0.4) the proposed machine learning model has poor performance. However, for the case with the highest blowing ratio (BR = 0.8), the proposed model presented better results. These results are then explained in terms of the resulting turbulent Prandtl number field and suggest that the training set is not appropriate for capturing the turbulent heat flux in fully attached jets in crossflow.


Sign in / Sign up

Export Citation Format

Share Document