Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000

2018 ◽  
Vol 175 ◽  
pp. 114-126 ◽  
Author(s):  
Tong Zhang ◽  
Li Meng ◽  
Wenwen Kong ◽  
Zepeng Yin ◽  
Yang Wang ◽  
...  
2003 ◽  
Vol 41 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Fumiko Taguchi ◽  
Rena Shimizu ◽  
Rie Nakajima ◽  
Kazuhiro Toyoda ◽  
Tomonori Shiraishi ◽  
...  

Gene ◽  
2014 ◽  
Vol 538 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Gennady V. Pogorelko ◽  
Maria Mokryakova ◽  
Oksana V. Fursova ◽  
Inna Abdeeva ◽  
Eleonora S. Piruzian ◽  
...  

Gene ◽  
2014 ◽  
Vol 539 (2) ◽  
pp. 283
Author(s):  
Gennady V. Pogorelko ◽  
Maria Mokryakova ◽  
Oksana V. Fursova ◽  
Inna Abdeeva ◽  
Eleonora S. Piruzian ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiao Wang ◽  
Chenfei Zheng ◽  
Xiangqi Shao ◽  
Zhangjian Hu ◽  
Jianxin Li ◽  
...  

AbstractWith global climate change, plants are frequently being exposed to various stresses, such as pathogen attack, drought, and extreme temperatures. Transcription factors (TFs) play crucial roles in numerous plant biological processes; however, the functions of many tomato (Solanum lycopersicum L.) TFs that regulate plant responses to multiple stresses are largely unknown. Here, using an RNA-seq approach, we identified SlNAP1, a NAC TF-encoding gene, which was strongly induced by various stresses. By generating SlNAP1 transgenic lines and evaluating their responses to biotic and abiotic stresses in tomato, we found that SlNAP1-overexpressing plants showed significantly enhanced defense against two widespread bacterial diseases, leaf speck disease, caused by Pseudomonas syringae pv. tomato (Pst) DC3000, and root-borne bacterial wilt disease, caused by Ralstonia solanacearum. In addition, SlNAP1 overexpression dramatically improved drought tolerance in tomato. Although the SlNAP1-overexpressing plants were shorter than the wild-type plants during the early vegetative stage, eventually, their fruit yield increased by 10.7%. Analysis of different hormone contents revealed a reduced level of physiologically active gibberellins (GAs) and an increased level of salicylic acid (SA) and abscisic acid (ABA) in the SlNAP1-overexpressing plants. Moreover, EMSAs and ChIP-qPCR assays showed that SlNAP1 directly activated the transcription of multiple genes involved in GA deactivation and both SA and ABA biosynthesis. Our findings reveal that SlNAP1 is a positive regulator of the tomato defense response against multiple stresses and thus may be a potential breeding target for improving crop yield and stress resistance.


2016 ◽  
Vol 29 (11) ◽  
pp. 862-877 ◽  
Author(s):  
Hari B. Krishnan ◽  
Alaa A. Alaswad ◽  
Nathan W. Oehrle ◽  
Jason D. Gillman

Legumes form symbiotic associations with soil-dwelling bacteria collectively called rhizobia. This association results in the formation of nodules, unique plant-derived organs, within which the rhizobia are housed. Rhizobia-encoded nitrogenase facilitates the conversion of atmospheric nitrogen into ammonia, which is utilized by the plants for its growth and development. Fatty acids have been shown to play an important role in root nodule symbiosis. In this study, we have investigated the role of stearoyl-acyl carrier protein desaturase isoform C (SACPD-C), a soybean enzyme that catalyzes the conversion of stearic acid into oleic acid, which is expressed in developing seeds and in nitrogen-fixing nodules. In-depth cytological investigation of nodule development in sacpd-c mutant lines M25 and MM106 revealed gross anatomical alteration in the sacpd-c mutants. Transmission electron microscopy observations revealed ultrastructural alterations in the sacpd-c mutants that are typically associated with plant defense response to pathogens. In nodules of two sacpd-c mutants, the combined jasmonic acid (JA) species (JA and the isoleucine conjugate of JA) were found to be reduced and 12-oxophytodienoic acid (OPDA) levels were significantly higher relative to wild-type lines. Salicylic acid levels were not significantly different between genotypes, which is divergent from previous studies of sacpd mutant studies on vegetative tissues. Soybean nodule phytohormone profiles were very divergent from those of roots, and root profiles were found to be almost identical between mutant and wild-type genotypes. The activities of antioxidant enzymes, ascorbate peroxidase, and superoxide dismutase were also found to be higher in nodules of sacpd-c mutants. PR-1 gene expression was extremely elevated in M25 and MM106, while the expression of nitrogenase was significantly reduced in these sacpd-c mutants, compared with the parent ‘Bay’. Two-dimensional gel electrophoresis and matrix-assisted laser desorption-ionization time of flight mass spectrometry analyses confirmed sacpd-c mutants also accumulated higher amounts of pathogenesis-related proteins in the nodules. Our study establishes a major role for SACPD-C activity as essential for proper maintenance of soybean nodule morphology and physiology and indicates that OPDA signaling is likely to be involved in attenuation of nodule biotic defense responses.


Author(s):  
Abeer H. Ali ◽  
Mostafa Abdelrahman ◽  
Magdi A. El-Sayed

Sign in / Sign up

Export Citation Format

Share Document