breeding target
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1376
Author(s):  
Zhi Zheng ◽  
Jonathan J. Powell ◽  
Xueling Ye ◽  
Xueqiang Liu ◽  
Zhongwei Yuan ◽  
...  

The phenomenon of overcompensation has been reported in various plant species although it has been treated by some as isolated incidents with only limited values. Reviewing reports on the extensive studies of defoliation in maize showed that different genotypes respond differently to defoliation, varying from phenomenal increase to significant loss in grain yield. The different responses of maize in kernel yield among genotypes to defoliation are confirmed in our experiments conducted in both China and Australia. Defoliated plants are likely to use less water during vegetative growth and that they also have better ability to extract water from the soil. We also found that defoliation dramatically delayed plant senescence under dry conditions, facilitating the production of high quality silage by widening the harvest window. As overcompensation occurs only in some genotypes, we believe that exploiting defoliation as a management practice directly for crop production can be risky. However, the fact that significant yield increase following defoliation does occur and that large genetic variation does exist meet the requirements for a successful breeding program. The detection of sizable quantitative trait locus (QTL) in the model plant species provides further evidence indicating the feasibility of exploiting this phenomenon through breeding. The stunning magnitudes of desirable responses reported in the literature suggest that overcompensation could become the most valuable breeding target in at least some species and its impact on crop production could be huge even if only a proportion of the reported variations could be captured.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Selma Cadot ◽  
Hang Guan ◽  
Moritz Bigalke ◽  
Jean-Claude Walser ◽  
Georg Jander ◽  
...  

Abstract Background Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. Results Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. Conclusions These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions.


2021 ◽  
pp. 471-486
Author(s):  
Jerlie Mhay Matres ◽  
Erwin Arcillas ◽  
Maria Florida Cueto-Reaño ◽  
Ruby Sallan-Gonzales ◽  
Kurniawan R. Trijatmiko ◽  
...  

AbstractDietary iron (Fe) deficiency affects 14% of the world population with significant health impacts. Biofortification is the process of increasing the density of vitamins and minerals in a crop, through conventional breeding, biotechnology approaches, or agronomic practices. This process has recently been shown to successfully alleviate micronutrient deficiency for populations with limited access to diverse diets in several countries (https://www.harvestplus.org/). The Fe breeding target in the HarvestPlus program was set based on average rice consumption to fulfil 30% of the Estimated Average Requirement of Fe in women and children. In this review, we present the reported transgenic approaches to increase grain Fe. Insertion of a single or multiple genes encoding iron storage protein, metal transporter, or enzyme involved in the biosynthesis of metal chelator in the rice genome was shown to be a viable approach to significantly increase grain-Fe density. The most successful approach to reach the Fe breeding target was by overexpression of multiple genes. Despite this success, a significant effort of 8–10 years needs to be dedicated from the proof of concept to varietal release. This includes large-scale plant transformation, event selection, collection of data for premarket safety assurance, securing biosafety permits for consumption and propagation, and collection of data for variety registration.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiao Wang ◽  
Chenfei Zheng ◽  
Xiangqi Shao ◽  
Zhangjian Hu ◽  
Jianxin Li ◽  
...  

AbstractWith global climate change, plants are frequently being exposed to various stresses, such as pathogen attack, drought, and extreme temperatures. Transcription factors (TFs) play crucial roles in numerous plant biological processes; however, the functions of many tomato (Solanum lycopersicum L.) TFs that regulate plant responses to multiple stresses are largely unknown. Here, using an RNA-seq approach, we identified SlNAP1, a NAC TF-encoding gene, which was strongly induced by various stresses. By generating SlNAP1 transgenic lines and evaluating their responses to biotic and abiotic stresses in tomato, we found that SlNAP1-overexpressing plants showed significantly enhanced defense against two widespread bacterial diseases, leaf speck disease, caused by Pseudomonas syringae pv. tomato (Pst) DC3000, and root-borne bacterial wilt disease, caused by Ralstonia solanacearum. In addition, SlNAP1 overexpression dramatically improved drought tolerance in tomato. Although the SlNAP1-overexpressing plants were shorter than the wild-type plants during the early vegetative stage, eventually, their fruit yield increased by 10.7%. Analysis of different hormone contents revealed a reduced level of physiologically active gibberellins (GAs) and an increased level of salicylic acid (SA) and abscisic acid (ABA) in the SlNAP1-overexpressing plants. Moreover, EMSAs and ChIP-qPCR assays showed that SlNAP1 directly activated the transcription of multiple genes involved in GA deactivation and both SA and ABA biosynthesis. Our findings reveal that SlNAP1 is a positive regulator of the tomato defense response against multiple stresses and thus may be a potential breeding target for improving crop yield and stress resistance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anthony Klein ◽  
Hervé Houtin ◽  
Céline Rond-Coissieux ◽  
Myriam Naudet-Huart ◽  
Michael Touratier ◽  
...  

Abstract Pea is one of the most important grain legume crops in temperate regions worldwide. Improving pea yield is a critical breeding target. Nine inter-connected pea recombinant inbred line populations were evaluated in nine environments at INRAE Dijon, France and genotyped using the GenoPea 13.2 K SNP array. Each population has been evaluated in two to four environments. A multi-population Quantitative Trait Loci (QTL) analysis for seed weight per plant (SW), seed number per plant (SN), thousand seed weight (TSW) and seed protein content (SPC) was done. QTL were then projected on the multi-population consensus map and a meta-analysis of QTL was performed. This analysis identified 17 QTL for SW, 16 QTL for SN, 35 QTL for TSW and 21 QTL for SPC, shedding light on trait relationships. These QTL were resolved into 27 metaQTL. Some of them showed small confidence intervals of less than 2 cM encompassing less than one hundred underlying candidate genes. The precision of metaQTL and the potential candidate genes reported in this study enable their use for marker-assisted selection and provide a foundation towards map-based identification of causal polymorphisms.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hannah M. Schneider ◽  
Jonathan P. Lynch

2020 ◽  
Author(s):  
Selma Cadot ◽  
Hang Guan ◽  
Moritz Bigalke ◽  
Jean-Claude Walser ◽  
Georg Jander ◽  
...  

ABSTRACTBackgroundPlants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of these root-associated microbiotas is not well understood. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the US. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soil types.ResultsOur analysis showed that the secretion of BXs affected community composition of rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of the two genetic backgrounds was weaker than that of the presence or absence of BXs, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three soil types. Instead, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae, and enriched various plant pathogenic fungi in the roots.ConclusionsThese findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different field locations. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng He ◽  
Katja Machemer-Noonan ◽  
Philippe Golfier ◽  
Faride Unda ◽  
Johanna Dechert ◽  
...  

Abstract Background Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. Results Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4–2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. Conclusions In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.


2017 ◽  
Vol 142 (4) ◽  
pp. 265-271
Author(s):  
David R. Byrnes ◽  
Fekadu F. Dinssa ◽  
Stephen C. Weller ◽  
James E. Simon

Vegetable amaranth (Amaranthus sp.), a leafy vegetable crop consumed around the world, is actively promoted as a source of essential micronutrients to at-risk populations. Such promotion makes micronutrient content essential to the underlying value of this crop. However, the extent to which micronutrient content varies by effect of genotype is not clear, leaving breeders uninformed on how to prioritize micronutrient contents as the criteria for selection among other performance parameters. A total of 32 entries across seven Amaranthus species were field-grown and analyzed for Fe, Mg, Ca, Zn, yield, height, and canopy spread comprising 20 entries at New Jersey in 2013; 12 entries at Arusha, Tanzania, in 2014; and 20 entries at New Jersey in 2015. The genotype effect was significant in all trials for Fe, Mg, Ca, Zn, total yield, marketable yield, height, and canopy spread. The Fe content range was above and below the breeding target of 4.2 mg/100 g Fe in all environments except for New Jersey 2015, where all entries were found to accumulate in levels below the target. All entries in each of the environments contained levels of Ca and Mg above breeding targets, 300 mg/100 g Ca and 90 mg/100 g Mg. None of the entries in any environment met the Zn breeding target of 4.5 mg/100 g Zn.


Sign in / Sign up

Export Citation Format

Share Document