The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies

2008 ◽  
Vol 109 (6) ◽  
pp. 1043-1059 ◽  
Author(s):  
N. Jacquinet-Husson ◽  
N.A. Scott ◽  
A. Chédin ◽  
L. Crépeau ◽  
R. Armante ◽  
...  
Author(s):  
Carolina Villarreal D’Angelo ◽  
Aline A Vidotto ◽  
Alejandro Esquivel ◽  
Gopal Hazra ◽  
Allison Youngblood

Abstract The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Lyα line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $\sim 56\%$ absorption found in Lyα transits, simultaneously with the lack of absorption in Hα transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Lyα observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s−1 with a temperature of [3 − 4] × 105 K. The stellar and planetary mass loss rates are found to be 2 × 10−15 M⊙ yr−1 and ∼[6 − 10] × 109 g s−1, respectively, for a stellar EUV luminosity of [0.8 − 1.6] × 1027 erg s−1. For the parameters explored in our simulations, none of our models present any significant absorption in the Hα line in agreement with the observations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiao-Fei Gao ◽  
Jing-Chen Xie ◽  
Hao Li ◽  
Xin Meng ◽  
Yong Wu ◽  
...  

AbstractThe cyanide anion (CN−) has been identified in cometary coma, interstellar medium, planetary atmosphere and circumstellar envelopes, but its origin and abundance are still disputed. An isolated CN− is stabilized in the vibrational states up to ν = 17 of the electronic ground-state 1Σ+, but it is not thought to survive in the electronic or vibrational states above the electron autodetachment threshold, namely, in superexcited states. Here we report the direct observation of long-lived CN− yields of the dissociative electron attachment to cyanogen bromide (BrCN), and confirm that some of the CN− yields are distributed in the superexcited vibrational states ν ≥ 18 (1Σ+) or the superexcited electronic states 3Σ+ and 3Π. The triplet state can be accessed directly in the impulsive dissociation of BrCN− or by an intersystem transition from the superexcited vibrational states of CN−. The exceptional stability of CN− in the superexcited states profoundly influences its abundance and is potentially related to the production of other compounds in interstellar space.


2009 ◽  
Vol 5 (S264) ◽  
pp. 385-394 ◽  
Author(s):  
J.-M. Grießmeier ◽  
M. Khodachenko ◽  
H. Lammer ◽  
J. L. Grenfell ◽  
A. Stadelmann ◽  
...  

AbstractStellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.


Sign in / Sign up

Export Citation Format

Share Document