scholarly journals Ongoing automated ground deformation monitoring of Domuyo - Laguna del Maule area (Argentina) using Sentinel-1 MSBAS time series: Methodology description and first observations for the period 2015–2020

2020 ◽  
Vol 104 ◽  
pp. 102850 ◽  
Author(s):  
Dominique Derauw ◽  
d’Oreye Nicolas ◽  
Maxime Jaspard ◽  
Alberto Caselli ◽  
Sergey Samsonov
Author(s):  
A. Y. Hou ◽  
X. Qiao ◽  
D. Li

As a new generation of high resolution and short revisit period of radar satellite, TerraSAR-X is not only able to meet the requirements of monitoring large scale surface subsidence, but also make it possible to monitor the small deformation of the short period. This articles takes the coastal areas of the west coast of Qingdao as the research object. With Small baselines subsets interferometry synthetic aperture radar (SBASI), this paper obtained the period the average annual rate of change from the time series analysis of TerraSAR-X data from April 2015 to October 2014.In order to enrich the historical deformation data of the study area, it analyse the time series of ALOS images from December 2010 to October 2008 with the same method. Finally,it analyse and demonstrate the experimental results.


2019 ◽  
Vol 192 ◽  
pp. 258-284 ◽  
Author(s):  
Zhiwei Li ◽  
Yunmeng Cao ◽  
Jianchao Wei ◽  
Meng Duan ◽  
Lixin Wu ◽  
...  

Author(s):  
A. Y. Hou ◽  
X. Qiao ◽  
D. Li

As a new generation of high resolution and short revisit period of radar satellite, TerraSAR-X is not only able to meet the requirements of monitoring large scale surface subsidence, but also make it possible to monitor the small deformation of the short period. This articles takes the coastal areas of the west coast of Qingdao as the research object. With Small baselines subsets interferometry synthetic aperture radar (SBASI), this paper obtained the period the average annual rate of change from the time series analysis of TerraSAR-X data from April 2015 to October 2014.In order to enrich the historical deformation data of the study area, it analyse the time series of ALOS images from December 2010 to October 2008 with the same method. Finally,it analyse and demonstrate the experimental results.


2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


Author(s):  
M. Crosetto ◽  
L. Solari ◽  
J. Balasis-Levinsen ◽  
N. Casagli ◽  
M. Frei ◽  
...  

Abstract. The Persistent Scatterer Interferometry is a powerful technique for ground motion detection and monitoring over wide areas. In the recent years, PSI has undergone a rapid evolution, largely thanks to the launch of the Copernicus Sentinel-1 constellation, the refinement of algorithms, and the increased computational capabilities. These factors allow for using Sentinel-1 interferometric data to develop ground deformation services for wide-area monitoring. Firstly, we review examples of services for national or regional deformation monitoring. The paper then describes the European Ground Motion Service (EGMS), part of the Copernicus Land Monitoring Service. The EGMS represents a unique initiative for performing ground deformation monitoring on a European scale.


Sign in / Sign up

Export Citation Format

Share Document