An algorithmic approach to small limit cycles of nonlinear differential systems: The averaging method revisited

Author(s):  
Bo Huang ◽  
Chee Yap
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450035 ◽  
Author(s):  
Shimin Li ◽  
Yulin Zhao

In this paper, we bound the number of limit cycles for a class of cubic reversible isochronous system inside the class of all cubic polynomial differential systems. By applying the averaging method of second order to this system, it is proved that at most eight limit cycles can bifurcate from the period annulus. Moreover, this bound is sharp.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tao Li ◽  
Jaume Llibre

<p style='text-indent:20px;'>In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center <inline-formula><tex-math id="M1">\begin{document}$ \dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ m\ge0 $\end{document}</tex-math></inline-formula> under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> with the discontinuity set <inline-formula><tex-math id="M4">\begin{document}$ \{(x, y)\in\mathbb{R}^2: xy = 0\} $\end{document}</tex-math></inline-formula>. Using the averaging theory up to any order <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula>, we give upper bounds for the maximum number of limit cycles in the function of <inline-formula><tex-math id="M6">\begin{document}$ m, n, N $\end{document}</tex-math></inline-formula>. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.</p>


2009 ◽  
Vol 50 ◽  
Author(s):  
Aleksandras Krylovas

The oscillatory integral is important for averaging of weakly nonlinear differential systems. Uniformly valid for parameters estimation of the integral can be use for substantiation of averaging method for wave interaction modelling.


2018 ◽  
Vol 15 (1) ◽  
pp. 84-93
Author(s):  
V. I. Volovach ◽  
V. M. Artyushenko

Reviewed and analyzed the issues linked with the torque and naguszewski cumulant description of random processes. It is shown that if non-Gaussian random processes are given by both instantaneous and cumulative functions, it is assumed that such processes are fully specified. Spectral characteristics of non-Gaussian random processes are considered. It is shown that higher spectral densities exist only for non-Gaussian random processes.


Sign in / Sign up

Export Citation Format

Share Document