Magnetic Resonance Imaging (MRI) Measurement of the Anterior Glenoid Angle: A New Method of Assessment of Glenoid Version

2021 ◽  
Vol 30 (7) ◽  
pp. e457
Author(s):  
Christopher Luke Antonacci ◽  
Mina Abdelshahed ◽  
Frank Alberta ◽  
Michael Cutalo ◽  
Russell Fritz
2020 ◽  
Vol 4 ◽  
pp. 247154922092682
Author(s):  
Nicholas J. Maister ◽  
Andrew Hely ◽  
Liam G. Twycross ◽  
Stephen D. Gill ◽  
Richard S. Page

Background The most effective method and modality for measuring glenoid version for different shoulder conditions is uncertain. Computed tomography (CT) imaging exposes the patient to radiation, and standard magnetic resonance imaging (MRI) does not consistently image the entire scapula. This study investigates the reliability of a new method for assessing glenoid version using routine shoulder MRI. Methods MRI images of 20 patients undergoing arthroscopy for shoulder instability were independently assessed by 3 clinicians for osseous and chondrolabral glenoid version. To assess glenoid version, a line was drawn from medial corner of the glenoid body to midpoint of the glenoid face. A line perpendicular to this was the reference against which to measure glenoid version. Measurements were repeated after 3 months to assess intra- and interobserver reliability. Reliability was determined using intraclass correlation coefficients (ICCs). Results Interclass correlation coefficients showed at least good reliability for most estimates of intraobserver reliability (ICC ≥ .66) and excellent reliability for most estimates of interobserver reliability (ICC ≥ .84), with the exception of some inferior glenoid measurements where ICC was poor (ICC ≤.41). Discussion We propose that this new method of measuring glenoid on standard axial MRI can be used as a simple, practical, and reliable method in shoulder instability patients, which will reduce the requirement for CT in this group.


2000 ◽  
Author(s):  
Rajakumar Israel ◽  
Theresa Atkinson

Abstract Tendon and ligament typically produce a weak signal during Magnetic Resonance Imaging (MRI). As a result only gross defects in the tissue could be detected. A method was recently developed to allow more detailed images of tendon structure to be obtained. This new method requires less than 2.5 minutes per scan and is therefore a reasonable method to utilize in a clinical setting to evaluate tendon or ligament injury and healing.


Cartilage ◽  
2019 ◽  
pp. 194760351987085 ◽  
Author(s):  
Noam Ben-Eliezer ◽  
José G. Raya ◽  
James S. Babb ◽  
Thomas Youm ◽  
Daniel K. Sodickson ◽  
...  

Objective The outcome of arthroscopic treatment for femoroacetabular impingement (FAI) depends on the preoperative status of the hip cartilage. Quantitative T2 can detect early biochemical cartilage changes, but its routine implementation is challenging. Furthermore, intrinsic T2 variability between patients makes it difficult to define a threshold to identify cartilage lesions. To address this, we propose a normalized T2-index as a new method to evaluate cartilage in FAI. Design We retrospectively analyzed magnetic resonance imaging (MRI) data of 18 FAI patients with arthroscopically confirmed cartilage defects. Cartilage T2 maps were reconstructed from multi-spin-echo 3-T data using the echo-modulation-curve (EMC) model-based technique. The central femoral cartilage, assumed healthy in early-stage FAI, was used as the normalization reference to define a T2-index. We investigated the ability of the T2-index to detect surgically confirmed cartilage lesions. Results The average T2-index was 1.14 ± 0.1 and 1.13 ± 0.1 for 2 separated segmentations. Using T2-index >1 as the threshold for damaged cartilage, accuracy was 88% and 100% for the 2 segmentations. We found moderate intraobserver repeatability, although separate segmentations yielded comparable accuracy. Damaged cartilage could not be identified using nonnormalized average T2 values. Conclusions This preliminary study confirms the importance of normalizing T2 values to account for interpatient variability and suggests that the T2-index is a promising biomarker for the detection of cartilage lesions in FAI. Future work is needed to confirm that combining T2-index with morphologic MRI and other quantitative biomarkers could improve cartilage assessment in FAI.


2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document