scholarly journals Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

2009 ◽  
Vol 35 (3-4) ◽  
pp. 298-309 ◽  
Author(s):  
C.G. Mattinson ◽  
J.L. Wooden ◽  
J.X. Zhang ◽  
D.K. Bird
2021 ◽  
Author(s):  
A.K. Gilmer ◽  
et al.

<div>Table S1: Whole-rock compositions of analyzed samples. Table S2: Major and trace element geochemistry of feldspar. Table S3: Major and trace element geochemistry of pyroxene. Table S4: Major and trace element geochemistry of biotite. Table S5: Major and trace element geochemistry of amphibole. Table S6: Zircon geochronology and trace element geochemistry. Table S7: Lutetium and hafnium isotopic compositions of zircon. Table S8: Amphibole-plagioclase thermometry. Table S9: Sample locations and lithologies.<br></div>


2020 ◽  
Vol 157 (9) ◽  
pp. 1499-1525 ◽  
Author(s):  
Ali A Sepahi ◽  
Hamed Vahidpour ◽  
David R Lentz ◽  
Chris RM McFarlane ◽  
Mohammad Maanijou ◽  
...  

AbstractPegmatites and associated granitoids are integral parts of the Alvand plutonic complex in the Sanandaj–Sirjan zone, Iran. Whole rock major- and trace-element lithogeochemistry together with zircon U–Pb geochronology and zircon geochemistry are examined to evaluate the petrogenesis of sapphire-bearing pegmatites and other peraluminous pegmatites in the region. Pegmatites vary in their chemical compositions from mostly peraluminous, high-K calc-alkaline to shoshonitic signatures. A rare variety of extremely peraluminous sapphire-bearing syenitoid pegmatite (Al2O3 > 30 wt %; A/CNK > 2) exists. This silica-undersaturated pegmatite and its sapphire crystals have a primary igneous origin. U–Pb zircon geochronology of three separate samples from this pegmatite indicates the following ages: 168 ± 1 Ma, 166 ± 1 Ma and 164 ± 1 Ma. The zircon grains have notable amounts of Hf (up to 17 200 ppm), U (up to 13 580 ppm), Th (up to 5148 ppm), Y (up to 4764 ppm) and ∑REE (up to 2534 ppm). There is a positive correlation between Hf and Th, Nb and Ta, U and Th, and Y and HREE and a negative correlation between Hf and Y values in the zircons. These zircons exhibit pronounced positive Ce anomalies (Ce/Ce* = 1.15–68.06) and negative Eu anomalies (Eu/Eu* = 0.001–0.56), indicative of the relatively oxidized conditions of the parent magma. Ti-in-zircon thermometry reveals temperatures from as low as ~683 °C up to ~828 °C (average = 755° ± 73 °C). Zircon and monazite saturation equilibria are also consistent with these temperatures. Zircon grains are magmatic (average La < 1.5, (Sm/La)N > 100 and Th/U > 0.7), with chemical characteristics similar to zircons from continental crust.


Sign in / Sign up

Export Citation Format

Share Document